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1. Introduction. We shall be concerned here with continuous complex-
valued functions of two complex variables which are analytic in one variable.
Such functions arise, for instance, when one considers the behavior of the
roots of a complex polynomial as the coefficients vary continuously [5]. They
also occur in the stability theory of differential equations [2].
The methods used are essentially topological in nature. The results needed

from the theory of functions of one variable all have topological proofs which
can be found in [6]. The theorems obtained are analogues of results in the
classical theory. The main result is given in Theorem 4.

2. Definitions. We give the two following basic definitions:

DEFINITION 1. A function J of two complex variables is said to belong to
the family S at the point p if p is contained in an open bi-cylinder B (X, Y)
such that J B is continuous and ](x’, y) is analytic on Y for each x X.

DEFINITION 2. A point p in the domain of ] is called a singular point if
the above conditions are not satisfied.

Since we consider only local properties, we assume that all functions involved
are defined on all complex 2-space.

3. Invariance under differentiation. We now prove theorem which will
be needed later. ] denotes the partial derivative.

THEOREM 1. I] ] belongs to S at p, then f belongs to S at p.

Proo]. Let B (X, Y) be the bi-cylinder containing p given in Definition 1.
Let R be a disk such that/ C Y and (X, R) contains p. Let x’ be a point of X
and let {xn} be any sequence of points converging to x’. Then .y uniform
continuity the family {J(x, y)} converges uniformly to J(x’, y) on R. Hence,
the family {J(x,, y) converges almost uniformly to ](x’, y) on R. It is known
that uniform convergence is equivalent to continuous convergence in this
case [3] and we see that if y’ is any point in R and {yn is any sequence of points
converging to y’, we have f(x,, y,,) -- f(x’, y’). Therefore, ] meets the require-
ments of Definition 1 on (X, R).

4. Singularities. It is well known that if an analytic function of two (or
more) complex variables has an isolated singularity, it is removable. Under
our definitions, the same theorem holds.
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