ACTION OF T^n ON COHOMOLOGY LENS SPACES

By Jingyal Pak

1. Introduction. D. Montgomery and G. D. Mostow [6] have shown that if the toroid T^n acts effectively on a (2n + 1)-spherelike cohomology manifold X over Z, then T^n has exactly 2^n isotropy subgroups, e, T^1, \dots, T^n and their direct products, where e is the identity element. That is, there is no isotropy subgroup with finite order except e. It is shown here that if T^n acts effectively on a (2n + 1)-lens-like cohomology manifold Y over Z, then T^n has an isotropy subgroup with finite order besides e. Also, it is shown that if T^n acts effectively on a cohomology lens (2n + 1)-space Y over Z_p , then the fixed point set $F(T^n, Y)$ is a cohomology lens (2r + 1)-space over Z_p , where $r \leq n$.

See [1], [9] and [10] for notations used here.

Let S^{2n+1} be a (2n + 1)-dimensional unit sphere in Euclidean (2n + 2)-space defined in terms of (n + 1) complex coordinates (Z_0, \dots, Z_n) satisfying $Z_0\bar{Z}_0 + \cdots + Z_n\bar{Z}_n = 1$.

Let $p \geq 2$ be a fixed integer, and q_1, \dots, q_n be *n* integers relatively prime to *p*. We define an action α on S^{2n+1} onto itself by $\alpha(t, (Z_0, \dots, Z_n)) = (e^{2\pi i \langle n \rangle p} Z_0, e^{2\pi i \langle n \rangle p} Z_1, \dots, e^{2\pi i \langle n \rangle p} Z_n)$. Then *t* generates a fixed point free cyclic group $Z_p(t)$ of rotations of S^{2n+1} of order *p*. The orbit space $S^{2n+1}/Z_p(t) = L_{2n+1}(p; q_1, \dots, q_n)$ is an orientable (2n + 1)-dimensional manifold called a lens space. If $\pi : S^{2n+1} \rightarrow S^{2n+1}/Z_p(t)$ is the projection map and $g \in Z_p(t)$, then $\pi g(x) = \pi(x)$ for $x \in S^{2n+1}$. $Z_p(t)$ is the group of deck (or covering) transformations since π is a covering map.

We shall denote by $L_{2n+1}(p)$ the lens space $L_{2n+1}(p; 1, \dots, 1)$, and by a cohomology lens (2n + 1)-space Y we mean a locally compact Hausdorff (2n + 1)-space whose cohomology ring over Z or Z_p is the same as that of $L_{2n+1}(p)$ over Z or Z_p , where Z is the ring of integers and $Z_p = Z/pZ$, p an odd prime number.

The ring structure of a cohomology lens space over Z_p with respect to the coefficients Z_p is $H^*(L_{2n+1}(p); Z_p) = \Lambda[a] \otimes Z_p[x]/(x^{n+1})$, where $\Lambda[a]$ is an exterior algebra on one generator a of degree 1, $Z_p[x]/(x^{n+1})$ is a polynomial algebra on one generator of degree 2 and truncated in dimension 2n + 2 (see [9] for more details).

The ring structure with respect to the coefficients Z is a polynomial algebra on one generator of degree 2 and truncated in dimension 2n + 2. The generator in dimension 2n + 1 can be chosen to be the fundamental cocycle of the manifold.

For the combinatorial equivalence and homotopy type classifications of lens spaces see [7].

1. Let Y be a (2n + 1)-dimensional compact, arcwise connected, arcwise locally connected, and simi-locally 1-connected space whose $\pi_1(Y) = Z_p$ and

Received April 5, 1966.