NOTE ON A PAPER BY M. F. TINSLEY

By Alan Zame

In a recent paper [1], M. F. Tinsley proves the following result: Suppose d_{1}, \cdots, d_{r} are elements of an (additive) abelian group G of order n, the d_{i} being distinct and $r \geq 2$. Suppose that the non-negative integers x_{1}, \cdots, x_{r} are a solution of the equation

$$
\begin{equation*}
x_{1} d_{1}+\cdots+x_{r} d_{r}=\theta \tag{*}
\end{equation*}
$$

(where θ is the identity of G), at least two of the x_{i} are positive and that $x_{1}+\cdots+x_{r} \geq n$. Then there exist non-negative integers y_{1}, \cdots, y_{r}, with each $y_{i} \leq x_{i}$ and at least one $0<y_{i}<x_{i}$ such that

$$
y_{1} d_{1}+\cdots+y_{r} d_{r}=\theta .
$$

In other words, "primitive" solutions of (*) must have $x_{1}+\cdots+x_{r}<n$. Tinsley's proof of this interesting result is rather complicated, so we offer the following simple proof of a slightly more general result.

Let G be any group of order $n>2$ (written multiplicatively) and let g_{1}, \cdots, g_{n-1} be any (not necessarily distinct) elements of G with, say, $g_{1} \neq g_{2}$. Then some product $g_{\alpha_{1}} \cdots g_{\alpha_{r}}$ of these g_{i}, where the α_{i} are distinct, is the identity e of G.

Proof. If either g_{1} or g_{2} is e, the result is trivial; otherwise, the elements g_{1}, g_{2} and $g_{1} g_{2}$ are distinct. Consider the n terms

$$
g_{3}, g_{3} g_{4}, \cdots, g_{3} g_{4} \cdots g_{n-1}=g, g g_{1}, g g_{2}, g g_{1} g_{2}
$$

Since G is of order n, either one of these terms is e, in which case the result follows, or two of these terms are equal. If $g_{3} \cdots g_{k}=g_{3} \cdots g_{r}(r>k)$ then $g_{k+1} \cdots g_{r}=e$. If $g_{3} \cdots g_{k}=g \gamma$ where γ is either g_{1} or g_{2} or $g_{1} g_{2}$, then $g_{k+1} \cdots g_{n-1} \gamma=e$. But these are the only equalities we can have, so the result follows.

References

1. M. F. Tinsley, A Combinatorial Theorem in Number Theory, this Journal, vol. 33(1966), pp. 75-79.

University of Miami
Received June 16, 1966.

