SPAN OF LINEAR COMBINATIONS OF DERIVATIVES OF POLYNOMIALS

By A. Meir and A. Sharma

1. Recently Robinson [2] has considered the problem of determining the maximum span $\sigma_{k}(P)$ (the distance between the largest and smallest zero) of the k-th derivative of polynomials $P(x)$ of degree n having n real zeros x_{1}, x_{2}, \cdots, x_{n} satisfying

$$
\begin{equation*}
\left|x_{i}\right| \leq 1, \quad 1 \leq i \leq n \tag{1.1}
\end{equation*}
$$

Later we obtained [1] analogous results for the maximum span when the zeros of the polynomials were subjected to either of the following conditions:

$$
\begin{gather*}
x_{i} \geq 0 \quad(1 \leq i \leq n) \quad \text { and } \quad \sum_{i=1}^{n} x_{i} \leq n \tag{1.2}\\
\sum_{i=1}^{n} x_{i}^{2} \leq n \tag{1.3}
\end{gather*}
$$

These conditions are suggested by similar investigations connected with classical orthogonal polynomials [3; 140 and 379]. Here we consider differential operators of the form

$$
\begin{equation*}
h(D)=\prod_{i=1}^{m}\left(D+\alpha_{i}\right), \quad\left(D \equiv \frac{d}{d x} ; \quad \alpha_{i} \text { constants }\right) \tag{1.4}
\end{equation*}
$$

and propose the problem of determining the maximum span (or the polynomial yielding the maximum span) of $h(D) P(x)$, when the zeros of $P(x)$ satisfy (1.1) or (1.2). The case when all the α_{i} 's are zero has been treated in [1] and [2]. When all the α_{i} 's are of the same sign and the zeros of $P(x)$ satisfy (1.1), we are able to apply the technique developed by Robinson in [2] to show that the polynomials yielding the maximum span of $h(D) P$ are of the form $c(x-1)^{p}(x+1)^{a}$, $p+q=n, c$ constant. We determine p and q uniquely for the special case $h(D)=D+\alpha$. When all the α_{i} 's are negative and the zeros of $P(x)$ satisfy (1.2), we obtain the complete solution of the problem if $m \leq n-2$. We solve the second problem for $h(D)=D+\alpha$ also if $\alpha>0$.
2. A lemma. Let $h(t)$ be a given polynomial of exact degree m with all its zeros real and positive, i.e.,

$$
\begin{equation*}
h(t)=\prod_{i=1}^{m}\left(t+\alpha_{j}\right), \quad \alpha_{i}<0, \quad 1 \leq j \leq m . \tag{2.0}
\end{equation*}
$$

Received April 26, 1966.

