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Let ](z) and g(z) be functions analytic in a set D in the complex plane. We
will say that ](z) is majorized by g(z) in D providing I](z)l

_
Ig(z)l for each

zinD.
Assume that ](z) is majorized by g(z) in Izl < 1 and g(0) 0. Our first

result asserts that maxl. I]’(z)!

_
max,l. lg’(z)] for each number r in the

interval 0

_
r

_
V 1. Since we may choose g(z) z, this generalizes

the well-known theorem: if ](z) is analytic for Iz] < 1, I](z)]

_
1, and ](0) 0,

then ]]’(z)l

_
1 for ]z / 1 [1; 19]. There is no positive constant r,

independent of ](z) and g(z), such that ]’(z) is majorized by g’(z) in Izl

_
r.

This can be shown by the example ](z) z 2rz and g(z) z 2rz, since
g’(r) 0 and/’(r) 0 for r 0. The situation is different if g(z) is univalent,
an assumption which implies that g’(z) O. We show that if g(z) is univalent
then ]’(z) is majorized by g’(z) in [z[

_
2 /. Also, if g(z) maps [zl < 1

one-to-one onto a convex domain, then ]’(z) is majori.ed by g’(z) in lzl

_
-.

These results are "best possible".
The second part of this paper concerns the problem of finding upper bounds

on la.I where ](z) _.., az is majorized by a univalent function g(z)
z W b.z in Izl < 1. We prove that la.!

_
n for n 1, 2, 3 and conjecture

that la.I

_
n for all n. This conjecture implies the "Bieberbach conjecture"

that lb,

_
n, since ](z) g(z) is possible under the hypotheses. The proof

of Theorem 2 indicates that the inequality ]a.I

_
n is a consequence of the

2k+lssertion if the odd nlytic function h(z) z -t- _,= c2+z is univalent
for ]zl < 1, then

(1) 1 + [C3I’ + {C512 + + {C2n--1{2 ,
In [6] the conjecture (1) was posed, and it was shown that it implies the
Bieberbach conjecture.
We establish the inequality la,{

_
n for ll n, if g(z) is spiral-like for [zi < 1.

This ssumes the existence of a rel number a, [a[ < v/2, such that
Re {e’"zg’(z)/g(z)} > 0 for Izl < 1 [8]. The special case a 0 corresponds
to univalent functions mapping [zl < 1 onto domains starlike with respect
to w 0. The inequality la.I

_
n is also obtained in the cuse g(z) is typically

real. This assumes g(z) is unalytic in [zl < 1 nd is rel if and only if z is real [7].
This class of typically reul functions includes the class of functions univalent
in izl < 1 with reul coefficients. We also show that ]al < en where g(z) is
an arbitrary univalent function, and for univalent functions g(z) mapping
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