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1. Purpose of this paper. We begin our discussion by reviewing some
terminology [4], [8]. A set of complex exponentials {exn} has completeness
interval I if it is complete L on every interval of length less than I and on no
larger interval. By convention I 0 if the set is complete on no interval,
and I if it is complete on every finite interval. When a X is repeated, we
require a zero of corresponding multiplicity in the entire function F(z) which
vanishes at the X’s. This means that, when closure rather than completeness
is in question, the functions

X X e

sre vilble for the pproximtion. The set {e’} is interpreted ccordingly,
though the question of multiple roots is not emphasized here (cf. Theorem 3).
The set hs excess E on closed inervM if it remains complete when E terms

ex re removed, but not when E W 1 terms are removed. The deficiency is
defined similarly, though we shM1 regard deficiency s negative excess.
ByconventionE= if I= ,ndE= - if I=0. When0 <I <

it convenient to define E if rbitrrily mny terms {eX} cn be removed
without losing completeness, nd E - if rbitrrily mny terms cn be
adjoined without getting completeness. As is esily proved, when E one
cn ctully djoin infinitely mny terms without getting completeness; hence,
it nturM to surmise that when E , one cn remove initely mny
ter without losing completeness. However, the truth or fMsity of this
conjecture is left n open problem.
As is well known, the excess E is fr finer mesure thn is the completeness

interwl I. Thus, I is unchanged by adjunction or removal of set of terms
e’X’ for which

1

[8], while E is affected by removal or ad]unetion of a single term. Also, within
wide limits, I is independent of the class of functions being considered. As
an illustration, I for the class L is the same as I for the class of functions with
continuous second derivatives. But E for the class L depends on p, and in
generM E increases by 1 if instead of ] L we require ]’ L. (These matters
are discussed more fully in 2.)

If in addition to a sequence {ex’} we have a sequence {e’"’} we write I(X)
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