THE EXCESS OF SETS OF COMPLEX EXPONENTIALS

By William O. Alexander, Jr. and Ray Redheffer

1. Purpose of this paper. We begin our discussion by reviewing some terminology [4], [8]. A set of complex exponentials $\left\{e^{i \lambda_{n} x}\right\}$ has completeness interval I if it is complete L^{p} on every interval of length less than I and on no larger interval. By convention $I=0$ if the set is complete on no interval, and $I=\infty$ if it is complete on every finite interval. When a λ is repeated, we require a zero of corresponding multiplicity in the entire function $F(z)$ which vanishes at the λ_{n} 's. This means that, when closure rather than completeness is in question, the functions

$$
e^{i \lambda x}, x e^{i \lambda x}, \cdots, x^{m-1} e^{i \lambda x}
$$

are available for the approximation. The set $\left\{e^{i \lambda_{n} x}\right\}$ is interpreted accordingly, though the question of multiple roots is not emphasized here (cf. Theorem 3).

The set has excess E on a closed interval if it remains complete when E terms $e^{i \lambda x}$ are removed, but not when $E+1$ terms are removed. The deficiency is defined similarly, though we shall regard a deficiency as a negative excess.

By convention $E=\infty$ if $I=\infty$, and $E=-\infty$ if $I=0$. When $0<I<\infty$, it is convenient to define $E=\infty$ if arbitrarily many terms $\left\{e^{i \lambda_{n} x}\right\}$ can be removed without losing completeness, and $E=-\infty$ if arbitrarily many terms can be adjoined without getting completeness. As is easily proved, when $E=-\infty$ one can actually adjoin infinitely many terms without getting completeness; hence, it is natural to surmise that when $E=\infty$, one can remove infinitely many terms without losing completeness. However, the truth or falsity of this conjecture is left as an open problem.

As is well known, the excess E is a far finer measure than is the completeness interval I. Thus, I is unchanged by adjunction or removal of a set of terms $\left\{e^{i \lambda_{\infty} x}\right\}$ for which

$$
\sum \frac{1}{\left|\lambda_{n}\right|}<\infty
$$

[8], while E is affected by removal or adjunction of a single term. Also, within wide limits, I is independent of the class of functions being considered. As an illustration, I for the class L is the same as I for the class of functions with continuous second derivatives. But E for the class L^{p} depends on p, and in general E increases by 1 if instead of $f \varepsilon L^{p}$ we require $f^{\prime} \varepsilon L^{p}$. (These matters are discussed more fully in §2.)

If in addition to a sequence $\left\{e^{i \lambda_{n} x}\right\}$ we have a sequence $\left\{e^{i \mu_{n} x}\right\}$ we write $I(\lambda)$
Received March 9, 1966. Supported in part by the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the U. S. Government.

