NOTE ON A PAPER OF CHEEMA AND GORDON

By A. O. L. Atkin

In [1] Cheema and Gordon give an ingenious combinatorial proof for the generating function of two-line partitions, and obtain certain congruences modulo 5 and 3 for two- and three-line partitions. They go on to assert that these congruences can be interpreted combinatorially in terms of ranks:
"To do this let τ be any k-line partition and let $\delta(\tau)$ be the greatest part of τ minus the number of parts on the first row of τ. It then turns out that for $n \equiv 3$ or $4(\bmod 5)$, the residues $(\bmod 5)$ of the numbers $\delta(\tau)$, where τ runs through all 2 -line partitions of n, are equidistributed among the five residue classes $0,1,2,3,4$. The proof is rather complicated and will not be gone into here."

In fact, a machine-computed table, using Macmahon's generating functions, shows that this is true for $n=3,4,8$, or 9 , and for no other values of n less than 100. I have also verified its falsehood independently by hand, using the combinatorial definition, for $n=13$ and $n=14$.

Their analogous assertion for $n \equiv 2(\bmod 3)$ and 3 -line partitions is true for $n=2,5,8,11,20,26$ and no other relevant value of n less than 60 . However, although the proof to which they refer must contain some error, the idea of extending the rank definition to the k-line case seems to be significant, since the rank differences in the tables are very much smaller than one might expect.

Writing

$$
\begin{gathered}
f(y)=\prod_{\nu=1}^{\infty}\left(1-y^{\nu}\right) \\
\sum_{n=0}^{\infty} p_{-2}(n) y^{n}=1 / f^{2}(y)
\end{gathered}
$$

Cheema and Gordon state and prove the formula

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-2}(5 n+3) y^{n}=10 f^{4}\left(y^{5}\right) / f^{6}(y)+125 y f^{10}\left(y^{5}\right) / f^{12}(y) \tag{1}
\end{equation*}
$$

It is worth noting that one can obtain formulae of a related kind for the series $\sum_{n=0}^{\infty} p_{-2}(5 n+4) y^{n}$ and $\sum_{n=0}^{\infty} p_{-2}(5 n+2) y^{n}$; these are of course more involved than (1) which essentially belongs to the subgroup $\Gamma_{0}(5)$ of the modular group, whereas the formulae below belong to $\Gamma(5)$. However they can be proved quite easily by the method of division of periods of theta-functions which is used in [1] to obtain (1). We have, for $|y|<1$,

Received March 7, 1966.

