GROUPS OF LINEAR FRACTIONAL TRANSFORMATIONS

By U. Srebro

1. Introduction. Let G denote a group of linear transformations $T, T z=$ $(a z+b):(c z+d), a d-b c=1$.
A point x in the extended plane is called a limit point with respect to a subset A of G, if and only if $T_{n} a \rightarrow x$ for some sequence $\left\{T_{n}\right\}$ of distinct elements of A and some point a. Other points are called ordinary.

The set of all limit points is denoted by L and its complement by O.
G is said to be discontinuous if and only if O is non-void.
G is said to be discrete if and only if no sequence in G converges to the identity I.
The main theorem in this note is the following:
Theorem 1. If G is discrete and $x \varepsilon L$, then G has a sequence $\left\{T_{n}\right\}$ of distinct elements, such that $T_{n} z \rightarrow x$ for every z in the extended plane with the possible exception of x and one other limit point y. The convergence is uniform on every compact set which does not contain x or y.

This theorem is an extension of the following theorem which is stated and proved in [3; 103]:

Theorem (a). If $\lambda \varepsilon L$, the set $G z$ is dense at λ : (1) for each ordinary point z, (2) for each z in the extended plane with the possible exception of $z=\lambda$ and of one other point.

Properties of the set L have been investigated extensively. It is known that L is closed. This theorem (Theorem 2) is proved here by using Theorem 1.
The relation between the set L and the set of points which are fixed under elements of G has been described in [3; 104]. Here are the results:

Theorem (b). If L is not a single point, it is the closure of the set of fixed points of the hyperbolic or loxodromic elements of G.

Theorem (c). If L has more than one limit point and G has parabolic elements, L is the closure of the set of the parabolic fixed points.

It is added there as an exercise that the requirement in (b) that L is not a single point is not essential and may be omitted.

This description is completed here by proving (Theorem 3) that if G is discrete
Received March 3, 1966. This research was supported by a fellowship from the Technion Israel Institute of Technology and is part of a M.Sc. Thesis directed by Professor E. Netanyahu.

