THE NUMBER OF SQUAREFREE DIVISORS OF AN INTEGER
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Let 6(n) denote the number of squarefree divisors of n. Mertens proved
in 1874 that
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where {¢(s) is the Riemann zeta function and v is Euler’s constant. Recently
Eckford Cohen [1] gave a new proof of (1). In this note, we improve the error
term to O(z?).

We use the following results.

Lemma 1. If 7(n) denotes the number of divisors of n, then

> ) = 2(log x + 2y — 1) + 0(%),
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where ¢ < 3.

Actually it is known that ¢ < 3 (cf. [4]). There is a conjecture that ¢ = § -+ ¢
for any ¢ > 0.

LemMma 2. If u(n) is the Mébius function, then for arbitrary g,

M(z) = 2 p) = Ox log™ z).

For a proof, see [3]. An easy deduction from Lemma 2 (or see [2]) is

LemMma 3. For arbitrary q, we have
Z pEn™ = 1/¢2) + 0@ log™ ).
Lemma 4. For arbitrary q,

2wl logn = ¢'(2)/£%(2) + 0@ log™ 2).
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Proof. From Y o, u(n)n™ = 1/¢(s), we have
2w~ logn = ¢'(2)/¢%2) — X wmn logn.

niz n>z
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