THE NUMBER OF SQUAREFREE DIVISORS OF AN INTEGER

By A. A. Gioia and A. M. Vaidya

Let $\theta(n)$ denote the number of squarefree divisors of n. Mertens proved in 1874 that

$$
\begin{equation*}
\sum_{n \leq x} \theta(n)=\frac{x}{\zeta(2)}\left(\log x+2 \gamma-1-\frac{2 \zeta^{\prime}(2)}{\zeta(2)}\right)+O\left(x^{\frac{1}{2}} \log x\right) \tag{1}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann zeta function and γ is Euler's constant. Recently Eckford Cohen [1] gave a new proof of (1). In this note, we improve the error term to $O\left(x^{\frac{1}{2}}\right)$.

We use the following results.
Lemma 1. If $\tau(n)$ denotes the number of divisors of n, then

$$
\sum_{n \leq x} \tau(n)=x(\log x+2 \gamma-1)+O\left(x^{c}\right)
$$

where $c<\frac{1}{2}$.
Actually it is known that $c<\frac{1}{3}$ (cf. [4]). There is a conjecture that $c=\frac{1}{4}+\epsilon$, for any $\epsilon>0$.

Lemma 2. If $\mu(n)$ is the Möbius function, then for arbitrary q,

$$
M(x)=\sum_{n \leq x} \mu(n)=O\left(x \log ^{-a} x\right)
$$

For a proof, see [3]. An easy deduction from Lemma 2 (or see [2]) is
Lemma 3. For arbitrary q, we have

$$
\sum_{n \leq x} \mu(n) n^{-2}=1 / \zeta(2)+O\left(x^{-1} \log ^{-\alpha} x\right)
$$

Lemma 4. For arbitrary q,

$$
\sum_{n \leq x} \mu(n) n^{-2} \log n=\zeta^{\prime}(2) / \zeta^{2}(2)+O\left(x^{-1} \log ^{-\alpha} x\right)
$$

Proof. From $\sum_{n=1}^{\infty} \mu(n) n^{-s}=1 / \zeta(s)$, we have

$$
\sum_{n \leq x} \mu(n) n^{-2} \log n=\zeta^{\prime}(2) / \zeta^{2}(2)-\sum_{n>x} \mu(n) n^{-2} \log n
$$

Received January 20, 1966. The first-named author is presently at Western Michigan University, Kalamazoo, Michigan; the second-named author is presently at Gujarat University, Ahmedabad, India.

