A CONGRUENCE EQUATION IN $G F\left[p^{n}, x\right]$ AND SOME RELATED ARITHMETICAL IDENTITIES

By K. Nageswara Rao

1. Introduction. Let $\Omega=G F\left[p^{n}, x\right]$ represent the domain of polynomials over the Galois field $G F\left(p^{n}\right)$ in the indeterminate x. Let R be a primary polynomial in Ω of degree r (see $\S 2$ for definitions). If $r_{1}, r_{2}, s_{1}, s_{2}$ are any four non-negative integers and $A_{0}, \cdots, A_{s_{1}}, B_{0}, \cdots, B_{s_{2}}$ are elements of Ω so that $\left(A_{i}, R\right)=\left(B_{i}, R\right)=1\left(i=0, \cdots, s_{1} ; j=0, \cdots, s_{2}\right)$, the object of this paper is to obtain the number of solutions $N_{\left.r_{1}, r_{2}\right)}^{\left(s_{1}, s_{s}\right)}(A, R)$, in $X_{i}^{(i)}(\bmod R)$ $\left(i=1, \cdots, r_{1}+1 ; j=0, \cdots, s_{1}\right)$ and $Y_{k}^{(l)}(\bmod R)\left(k=1, \cdots, r_{2}+1 ;\right.$ $l=0, \cdots, s_{2}$) of the congruence

$$
\begin{align*}
A \equiv A_{0} X_{1}^{(0)} & \cdots X_{r_{1}+1}^{(0)}+\cdots+A_{s_{1}} X_{1}^{\left(s_{1}\right)} \cdots X_{r_{+1}}^{\left(s_{1}\right)} \tag{1.1}\\
& +B_{0} Y_{1}^{(0)} \cdots Y_{r_{2}+1}^{(0)}+\cdots+B_{s_{2},} Y_{1}^{\left(s_{s}\right)} \cdots Y_{r_{z}+1}^{\left(s_{s}\right)} \quad(\bmod R)
\end{align*}
$$

with the restrictions

$$
\begin{equation*}
\left(Y_{k}^{(l)}, R\right)=1 \quad\left(k=1, \cdots, r_{2}+1 ; l=0, \cdots, s_{2}\right) \tag{1.2}
\end{equation*}
$$

In fact we obtain a recurring relation for $N_{r_{1}, r_{2}}^{\left(s_{2}, s_{2}\right)}(A, R)$ in terms of Carlitz's η-sum (see §2) and establish related arithmetical identities involving some known functions.

For discussion of problems of similar nature in algebraic number fields we refer to Cohen [5; (1.4)] and in the rational case to Gyires [7]. The author has also discussed certain congruence equations of similar kind in the rational case and also in $G F\left[p^{n}, x\right]$ (see [8], [9]).
2. Preliminaries and notations. Let K be a field of characteristic zero containing the p-th roots of unity. Let M be any polynomial in Ω, say,

$$
\begin{equation*}
M=\alpha_{0} x^{m}+\cdots+\alpha_{m}, \quad \alpha_{i} \varepsilon G F\left(p^{n}\right), \quad \alpha_{0} \neq 0 \tag{2.1}
\end{equation*}
$$

then we write $\operatorname{deg} M=m, \operatorname{Sgn} M=\alpha_{0}$, if $\alpha_{0}=1$, then M is primary; also we put $|M|=p^{n m}$. By $\sum_{D \mid M}^{\prime}$ we mean the summation over all the primary divisors D of M.

We say that a single-valued function f defined for all elements of Ω and assuming values in K, is (R, K) arithmetic or simply arithmetic, if $f(A)=f\left(A^{1}\right)$ for $A \equiv A^{1}(\bmod R)(R$ being a primary polynomial of degree $r)$.

We define Cauchy product of two arithmetic functions f and g to be the function $h=f \cdot g$ defined by

$$
\begin{equation*}
h(F)=f \cdot g(F)=\sum_{F=A+B} f(A) g(B) \tag{2.2}
\end{equation*}
$$

Received December 16, 1965.

