ENUMERATION OF SYMMETRIC ARRAYS

By L. CARLITZ

1. Introduction. Let H(n, r) denote the number of $n \times n$ arrays $[a_{ij}]$, where the a_{ij} are nonnegative integers that satisfy

(1.1)
$$\sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{n} a_{ij} = r.$$

Anand, Dumir and Gupta [1] have proved that if $A(n) = H(n, 2)/(n!)^2$, then

(1.2)
$$\sum_{n=0}^{\infty} A(n)x^n = (1 - x)^{-\frac{1}{2}}e^{x/2}.$$

They have also proved that

(1.3)
$$H(3,r) = \binom{r+2}{2} + 3\binom{r+3}{4},$$

from which it follows that

(1.4)
$$\sum_{r=0}^{\infty} H(3, r) x^{r} = \frac{1+x+x^{2}}{(1-x)^{5}}.$$

They conjecture that

$$H(n, r) = \sum_{i=0}^{\binom{n-1}{2}} c_i \binom{r+n+i-1}{n+2i-1},$$

where the c_i depend on n alone.

In the present paper we consider an analogous problem for symmetric arrays. Let $S_n(r)$ denote the number of $n \times n$ arrays a_{ij} , where the a_{ij} are integers such that

(1.5)
$$a_{ij} = a_{ji} \ge 0$$
 $(i, j = 1, 2, \dots, n)$

and

(1.6)
$$\sum_{i=1}^{n} a_{ii} = r \qquad (j = 1, 2, \cdots, n).$$

Clearly

(1.7)
$$S_n(0) = 1$$
 $(n = 1, 2, 3, \cdots).$

We shall show that

(1.8)
$$\sum_{n=0}^{\infty} S_n(1) \frac{x^n}{n!} = \exp(x + \frac{1}{2}x^2) \qquad (S_0(1) = 1).$$

Received May 11, 1966. Supported in part by NSF Grant GP-5174.