ENUMERATION OF SYMMETRIC ARRAYS

By L. Carlitz

1. Introduction. Let $H(n, r)$ denote the number of $n \times n$ arrays $\left[a_{i j}\right]$, where the $a_{i j}$ are nonnegative integers that satisfy

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j}=\sum_{i=1}^{n} a_{i j}=r . \tag{1.1}
\end{equation*}
$$

Anand, Dumir and Gupta [1] have proved that if $A(n)=H(n, 2) /(n!)^{2}$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} A(n) x^{n}=(1-x)^{-\frac{1}{2}} e^{x / 2} \tag{1.2}
\end{equation*}
$$

They have also proved that

$$
\begin{equation*}
H(3, r)=\binom{r+2}{2}+3\binom{r+3}{4} \tag{1.3}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\sum_{r=0}^{\infty} H(3, r) x^{r}=\frac{1+x+x^{2}}{(1-x)^{5}} \tag{1.4}
\end{equation*}
$$

They conjecture that

$$
H(n, r)=\sum_{i=0}^{\binom{n-1}{2}} c_{i}\binom{r+n+i-1}{n+2 i-1}
$$

where the c_{i} depend on n alone.
In the present paper we consider an analogous problem for symmetric arrays. Let $S_{n}(r)$ denote the number of $n \times n$ arrays $a_{i j}$, where the $a_{i j}$ are integers such that

$$
\begin{equation*}
a_{i j}=a_{i i} \geq 0 \quad(i, j=1,2, \cdots, n) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j}=r \quad(j=1,2, \cdots, n) \tag{1.6}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
S_{n}(0)=1 \quad(n=1,2,3, \cdots) \tag{1.7}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{n}(1) \frac{x^{n}}{n!}=\exp \left(x+\frac{1}{2} x^{2}\right) \quad\left(S_{0}(1)=1\right) \tag{1.8}
\end{equation*}
$$

Received May 11, 1966. Supported in part by NSF Grant GP-5174.

