SUFFICIENT CONDITIONS FOR STABILITY OF A SOLUTION OF DIFFERENCE EQUATIONS

By R. A. Smith

1. Statement and discussion of results. If $x=\left(x_{i}\right)$ is an m-vector and $A=\left(a_{i j}\right)$ is an $m \times m$ matrix, with complex elements, let $\|x\|^{2}=\sum\left|x_{i}\right|^{2}$ and $\|A\|=\max \|A x\| /\|x\|$ for $x \neq 0$. Also let $\rho(A)=\left|\lambda_{1}\right|, \sigma(A)=\left|\lambda_{m}\right|$, where $\lambda_{1}, \cdots, \lambda_{m}$ are the eigenvalues of A arranged so that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{m}\right|$. It is known that if A is constant and $\rho(A)<1$, then $\|x(t)\| \rightarrow 0$ as $t \rightarrow \infty$ for every solution $x(t)$ of the system of linear difference equations $x(t+1)=A x(t)$ in which t takes the values $0,1,2,3, \cdots$. Perron [8] and Hahn [2] have shown that the same is true of the solutions of the perturbed system

$$
\begin{equation*}
x(t+1)=A x(t)+f(t, x(t)), \tag{1}
\end{equation*}
$$

provided that $\|f(t, x)\| \leq \alpha\|x\|$ with sufficiently small constant α. In proving results of this kind Hahn [2] and Kalman and Bertram [4] make use of a quadratic Lyapunov function $x^{*} P x$ with

$$
\begin{equation*}
A^{*} P A-P=-Q \tag{2}
\end{equation*}
$$

where P, Q are positive definite hermitian matrices and $A^{*}=\left(\bar{a}_{i i}\right)$ is the conjugate transpose of $A=\left(a_{i j}\right)$. Hahn showed that if $\rho(A)<1$, then (2) has a unique hermitian solution P for each hermitian Q and if Q is positive definite, then so is P. The eigenvalues $\rho(P), \sigma(P)$, of P, are of some interest. It is shown in $\S 2$ that if Q is positive definite, then

$$
\begin{equation*}
\rho\left(P_{0}\right) \rho(Q) \geq \rho(P) \geq \rho\left(P_{0}\right) \sigma(Q), \quad \sigma\left(P_{0}\right) \rho(Q) \geq \sigma(P) \geq \sigma\left(P_{0}\right) \sigma(Q) \tag{3}
\end{equation*}
$$

where P_{0} is the hermitian solution of (2) in the special case when Q is the unit $m \times m$ matrix I. That is,

$$
\begin{equation*}
A^{*} P_{0} A-P_{0}=-I . \tag{4}
\end{equation*}
$$

For $\rho\left(P_{0}\right), \sigma\left(P_{0}\right)$ the following estimates are obtained.
Theorem 1. If $\rho(A)<1$, then

$$
\begin{equation*}
\rho\left(P_{0}\right) \leq(1+\| A| |)^{2 m-2}\left(1-\left|\lambda_{1}\right|^{2}\right)^{-1} \prod_{\nu=2}^{m}\left(1-\left|\lambda_{\nu}\right|\right)^{-2} \tag{5}
\end{equation*}
$$

$\quad \rho\left(P_{0}\right) \geq\left(1-\left|\lambda_{1}\right|^{2}\right)^{-1}$,
$\sigma\left(P_{0}\right) \leq\left(1-\left|\lambda_{m}\right|^{2}\right)^{-1}$,

$$
\begin{equation*}
\sigma\left(P_{0}\right) \geq\left(1-\sigma\left(A^{*} A\right)\right)^{-1} \tag{7}
\end{equation*}
$$

Received January 19, 1966.

