SUFFICIENT CONDITIONS FOR STABILITY OF A SOLUTION OF DIFFERENCE EQUATIONS

By R. A. Smith

1. Statement and discussion of results. If $x = (x_i)$ is an *m*-vector and $A = (a_{ij})$ is an $m \times m$ matrix, with complex elements, let $||x||^2 = \sum |x_i|^2$ and $||A|| = \max ||Ax||/||x||$ for $x \neq 0$. Also let $\rho(A) = |\lambda_1|$, $\sigma(A) = |\lambda_m|$, where $\lambda_1, \dots, \lambda_m$ are the eigenvalues of A arranged so that $|\lambda_1| \geq \dots \geq |\lambda_m|$. It is known that if A is constant and $\rho(A) < 1$, then $||x(t)|| \to 0$ as $t \to \infty$ for every solution x(t) of the system of linear difference equations x(t + 1) = Ax(t) in which t takes the values 0, 1, 2, 3, \dots . Perron [8] and Hahn [2] have shown that the same is true of the solutions of the perturbed system

(1)
$$x(t+1) = Ax(t) + f(t, x(t)),$$

provided that $||f(t, x)|| \leq \alpha ||x||$ with sufficiently small constant α . In proving results of this kind Hahn [2] and Kalman and Bertram [4] make use of a quadratic Lyapunov function x^*Px with

$$A^*PA - P = -Q,$$

where P, Q are positive definite hermitian matrices and $A^* = (\bar{a}_{ii})$ is the conjugate transpose of $A = (a_{ii})$. Hahn showed that if $\rho(A) < 1$, then (2) has a unique hermitian solution P for each hermitian Q and if Q is positive definite, then so is P. The eigenvalues $\rho(P)$, $\sigma(P)$, of P, are of some interest. It is shown in §2 that if Q is positive definite, then

$$(3) \qquad \rho(P_{0})\rho(Q) \geq \rho(P) \geq \rho(P_{0})\sigma(Q), \qquad \sigma(P_{0})\rho(Q) \geq \sigma(P) \geq \sigma(P_{0})\sigma(Q),$$

where P_0 is the hermitian solution of (2) in the special case when Q is the unit $m \times m$ matrix I. That is,

(4)
$$A^*P_0A - P_0 = -I.$$

For $\rho(P_0)$, $\sigma(P_0)$ the following estimates are obtained.

THEOREM 1. If $\rho(A) < 1$, then

(5)
$$\rho(P_0) \leq (1 + ||A||)^{2m-2} (1 - |\lambda_1|^2)^{-1} \prod_{\nu=2}^m (1 - |\lambda_\nu|)^{-2},$$

(6)
$$\rho(P_0) \ge (1 - |\lambda_1|^2)^{-1}$$

(7) $\sigma(P_0) \leq (1 - |\lambda_m|^2)^{-1},$

(8)
$$\sigma(P_0) \ge (1 - \sigma(A^*A))^{-1}$$
,

Received January 19, 1966.