*x*¹-SPACES IN MEASURE ALGEBRAS OVER COMPACT SEMIGROUPS

BY HENRY P. DECELL, JR.

This paper is concerned with certain relationships between the structure of a compact topological semigroup S and the structure of the associated measure algebra M(S) of all complex valued regular measures defined on the Borel sets, B(S), of S. These measures form a Banach algebra under convolution product and total variation norm. Since S is compact, we may identify M(S) with $C(S)^*$, the space of bounded linear functionals on C(S), and will, at times, use the notation $\mu(f) = \int f(x) d\mu(x)$ for $f \in C(S)$, $\mu \in M(S)$. F. B. Wright [8] has investigated upper semicontinuous decompositions of a compact topological semigroup in terms of such a measure algebra.

A linear subspace of M(S) will be called an ideal of M(S) if it is closed under right and left convolution product with elements of M(S). If $\mu \in M(S)$, $\mathcal{L}^{1}(\mu)$ will denote those measures absolutely continuous with respect to μ . Clearly, $\mathcal{L}^{1}(\mu)$ is a linear subspace of M(S), and it is easy to see that if $\mu \geq 0$, then $\mathcal{L}^{1}(\mu)$ is an ideal of M(S) if and only if $x\mu$ and μx are elements of $\mathcal{L}^{1}(\mu)$ for each point measure x determined by $x \in S$. The set of all $\lambda \in M(S)$ such that $\lambda \geq 0$, $||\lambda|| = 1$ is a weak-* compact topological semigroup under convolution multiplication and will be denoted \tilde{S} . The symbols K and $K(\tilde{S})$ will, respectively, denote the kernel of S and \tilde{S} ; and for $\mu \in M(S)$, carrier (μ) will denote the compliment of the largest open set in S having $|\mu|$ -measure zero.

THEOREM 1. If $\mu \in \tilde{S}$ and $\mathfrak{L}^{1}(\mu)$ is an ideal of M(S) then carrier (μ) is an ideal of S.

Proof. If $x \in S$, then the point measure x is an element of \tilde{S} and since $\mathfrak{L}^{1}(\mu)$ is an ideal of M(S), we have that $x\mu \ll \mu$ and $\mu x \ll \mu$. Now carrier $(x\mu) \subset$ carrier (μ) for if V is an open set having μ -measure zero, then $x\mu(V) = 0$. Hence, the definition of the carrier of a measure implies the desired inclusion. Similarly we have carrier $(\mu x) \subset$ carrier (μ) . According to Wendel [7] [4], (x) carrier $(\mu) = \operatorname{carrier} (\mu) \subset$ carrier (μ) and (carrier $(\mu))$) $(x) = \operatorname{carrier} (\mu x) \subset$ carrier (μ) . This completes the proof of the theorem.

THEOREM 2. If $\lambda^2 = \lambda \in \widetilde{S}$ and $\mathfrak{L}^1(\lambda)$ is an ideal of M(S), then:

(A) The kernel $K = carrier (\lambda)$. (B) $\lambda \in K(\tilde{S})$.

Proof. Since $\mathfrak{L}^1(\lambda)$ is an ideal of M(S), Theorem 1 implies that carrier (λ) is an ideal of S. Since the kernel K is the minimal ideal, we have $K \subset \text{carrier } (\lambda)$.

Received January 8, 1966. Partially supported by NSF Grant 17777, Louisiana State University, Baton Rouge, La.