EQUATIONAL CLASSES OF LATTICES

By G. GRATZER

In his paper [2] B. Jonsson considers the lattice of all equational classes of
lattices. The zero element of this lattice is the class 0 of all one-element lattices.
This is covered by the class D of all distributive lattices, and no other class
covers 0. Let M, and N; denote the five element modular and non-distributive,
and the five element non-modular lattice, respectively, M; and N; the equa-
tional classes generated by them. Then it is easy to see that D is covered by
exactly two classes, M; and N .

One of the problems raised by B. Jonsson in [2] is to find how many equational
classes of modular lattices cover M; .

Let K be an equational class of lattices, S(K) the class of all subdirectly irre-
ducible lattices in K. It is easy to see that S(K) generates K and thus K, = K,
if and only if S(K,) = S(K,).

Now suppose that K covers M, and contains modular lattices only. Then
S:(K) contains at least three lattices L, M; and 2 (the two element lattice)
up to isomorphism. Indeed, since K D M;, S;(K) DO S:M;) 2 {M;, 2}.
Therefore there exists a lattice L with L ¢ S;(K), L ¢ S;(M;). Since L is non-
distributive it contains sublattices isomorphic to M; and 2. Therefore the
class generated by L properly contains M, , thus L generates K. Thus we
proved the following statement:

Let K be an equational class of modular lattices, covering M; . Then K
can be generated by a single modular lattice L, which is subdirectly irreducible.

My aim in this note is to find all finite subdirectly irreducible lattices which
generate an equational class covering M; .

TaEOREM. Let L be a fintte modular subdirectly irreducible laitice. L generates
an equational class covering My if and only if L is isomorphic to one of the two
lattices of Fig. 1.
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