THE THEORY OF MULTIVALENT FUNCTIONS

By Teruo Takatsuka

1. Introduction. Various criteria for multivalence of analytic functions have been obtained by several authors [1], [5], [6], [7], [13]. In a recent note K. Sakaguchi obtained the following result [13].

THEOREM A. Let $f(z) = z^p + \cdots$, $\varphi(z)$ be regular in the disk $\overline{E}(|z| \leq r)$ and the plane $|z| < +\infty$ respectively, and $f'(z) \neq 0$ for the annulus $0 < |z| \leq r$ (hereafter called A). If neither f(z) nor $\varphi'(\log f(z))$ vanishes on the circle |z| = r(hereafter called C_z) and the inequality

$$\int_{c} d \arg d\varphi \left(\log f(z) \right) > -\pi$$

for all arcs C on C_{*} , then f(z) is p-valent in \overline{E} .

In §2 of this paper we shall show a generalization of the above theorem. In §3, some sufficient conditions for starlikeness or convexity of analytic functions will be studied. In §4, meromorphic close-to-convex functions will be considered, and we shall study the application of results in §5.

2. Fundamental results.

DEFINITION 1. Let f(z) be regular in \overline{E} and $f'(z) \neq 0$ on C_s and let C_w be the image curve of C_s by the function w = f(z). When a directed arc C'_w on C_w is a simple closed curve whose interior does not contain the origin and whose direction is clockwise, we say that C'_w makes a loop [15; 213] on C_w . On such a loop C'_w we have

$$\int_{C_w} d \arg df(z) \leq -\pi.$$

LEMMA 1. Let f(z) be regular for \overline{E} and $f'(z) \neq 0$ on C_z . Suppose that $\int_0^{2\pi} d \arg df(z) = 2k\pi$ (k: positive integer). If f(z) is (p + 1)-valent in E(|z| < r), then we have at least $p + 1 - k \arccos C_1$, C_2 , \cdots , C_{p+1-k} on C_z which have no common parts except perhaps the ends of them for which

$$\int_{C_i} d \arg df(z) \leq -\pi, \qquad i = 1, 2, \cdots, p + 1 - k$$

hold.

We owe this lemma to T. Umezawa [15; 224-225].

Received September 10, 1965.