A NOTE ON MATRICES OVER EXTENSION FIELDS

BY DAVID CARLSON

In [1] this author noted that a square complex matrix A is similar to a real matrix if and only if $A = H_1H_2$ for some Hermitian matrices H_1 and H_2 (part of this result may be found in [9; 63], or [8]). In this note we discuss several aspects of a more general question: given fields E and $F, E \subseteq F$, when is a square matrix over F similar to a matrix over E?

1. Let E, F be given, together with an automorphism φ of F with E as fixed field. We denote by $M_m(F)$ the set of all $m \times m$ matrices over F. For $A = [a_{ij}] \in M_m(F)$ we define $A^{\varphi} = [\varphi(a_{ij})]$. We have

$$(AB)^{\varphi} = A^{\varphi}B^{\varphi}, \qquad (A^{\varphi})^{-1} = (A^{-1})^{\varphi}, \qquad (A^{\varphi})^{T} = (A^{T})^{\varphi}.$$

Let $f(x) = \sum_{i=0}^{r} a_{i}x^{i} \varepsilon F[x]$; we define $f^{\varphi}(x) = \sum \varphi(a_{i})x^{i}.$

PROPOSITION. A ε $M_m(F)$ is similar to a matrix over E if and only if A is similar to A^{φ} .

Proof. If
$$A = RBR^{-1}$$
 for some $B \in M_m(E)$, then
 $A^{\varphi} = R^{\varphi}B(R^{\varphi})^{-1} = (R^{\varphi}R^{-1})A(R^{\varphi}R^{-1})^{-1}.$

To prove the converse, suppose A has similarity invariants $h_i(x), \dots, h_k(x)$. Then A^{φ} has similarity invariants $h_1^{\varphi}(x), \dots, h_k^{\varphi}(x)$. If A is similar to A^{φ} , we must have $h_i^{\varphi}(x) = h_i(x) \in E[x]$, $i = 1, \dots, k$, so that A is similar to $\sum \bigoplus C(h_i(x)) \in M_m(E)$, where $C(h_i(x))$ is the companion matrix of $h_i(x)$. The proof is complete.

2. Next we specialize to the case where [F : E] = 2. We write $(A^{\varphi})^T = A^*$ and say that A is φ -Hermitian if $A^* = A$. We can now generalize the remark at the beginning of this note.

COROLLARY. Let A ε $M_m(F)$. If [F : E] = 2, the following are equivalent:

(i) A is similar to a matrix over E,

(ii) there exists a φ -Hermitian H for which $H^{-1}AH = A^*$,

(iii) there exist φ -Hermitian H_1 and H_2 , H_2 nonsingular, for which $A = H_1H_2$.

Proof. (i) \Rightarrow (ii). Suppose $R^{-1}AR = B \epsilon M_m(E)$. By a theorem of Taussky and Zassenhaus [10], there exists a symmetric $S \epsilon M_m(E)$ for which $S^{-1}BS = B^T = B^*$. Calculation shows that

$$(RSR^*)^{-1}A(RSR^*) = A^*;$$

as [F:E] = 2, φ^2 is the identity automorphism and RSR^* is φ -Hermitian.

Received August 2, 1965. Research supported by a Directed Research Grant from Oregon State University and by NSF Grant GP-4051.