A NOTE ON MATRICES OVER EXTENSION FIELDS

by David Carlson

In [1] this author noted that a square complex matrix A is similar to a real matrix if and only if $A=H_{1} H_{2}$ for some Hermitian matrices H_{1} and H_{2} (part of this result may be found in [9; 63], or [8]). In this note we discuss several aspects of a more general question: given fields E and $F, E \subseteq F$, when is a square matrix over F similar to a matrix over E ?

1. Let E, F be given, together with an automorphism φ of F with E as fixed field. We denote by $M_{m}(F)$ the set of all $m \times m$ matrices over F. For $A=$ $\left[a_{i j}\right] \varepsilon M_{m}(F)$ we define $A^{\varphi}=\left[\varphi\left(a_{i j}\right)\right]$. We have

$$
(A B)^{\varphi}=A^{\varphi} B^{\varphi}, \quad\left(A^{\varphi}\right)^{-1}=\left(A^{-1}\right)^{\varphi}, \quad\left(A^{\varphi}\right)^{T}=\left(A^{T}\right)^{\varphi} .
$$

Let $f(x)=\sum_{i=0}^{r} a_{i} x^{i} \varepsilon F[x]$; we define $f^{\varphi}(x)=\sum \varphi\left(a_{i}\right) x^{i}$.
Proposition. A $\varepsilon M_{m}(F)$ is similar to a matrix over E if and only if A is similar to A^{φ}.

Proof. If $A=R B R^{-1}$ for some $B \varepsilon M_{m}(E)$, then

$$
A^{\varphi}=R^{\varphi} B\left(R^{\varphi}\right)^{-1}=\left(R^{\varphi} R^{-1}\right) A\left(R^{\varphi} R^{-1}\right)^{-1}
$$

To prove the converse, suppose A has similarity invariants $h_{1}(x), \cdots, h_{k}(x)$. Then A^{φ} has similarity invariants $h_{1}^{\varphi}(x), \cdots, h_{k}^{\varphi}(x)$. If A is similar to A^{φ}, we must have $h_{i}^{\varphi}(x)=h_{i}(x) \varepsilon E[x], i=1, \cdots, k$, so that A is similar to $\sum \oplus C\left(h_{i}(x)\right) \varepsilon M_{m}(E)$, where $C\left(h_{i}(x)\right)$ is the companion matrix of $h_{i}(x)$. The proof is complete.
2. Next we specialize to the case where $[F: E]=2$. We write $\left(A^{\varphi}\right)^{T}=A^{*}$ and say that A is φ-Hermitian if $A^{*}=A$. We can now generalize the remark at the beginning of this note.

Corollary. Let $A \varepsilon M_{m}(F)$. If $[F: E]=2$, the following are equivalent:
(i) A is similar to a matrix over E,
(ii) there exists a φ-Hermitian H for which $H^{-1} A H=A^{*}$,
(iii) there exist φ-Hermitian H_{1} and H_{2}, H_{2} nonsingular, for which $A=H_{1} H_{2}$.

Proof. (i) \Rightarrow (ii). Suppose $R^{-1} A R=B \varepsilon M_{m}(E)$. By a theorem of Taussky and Zassenhaus [10], there exists a symmetric $S \varepsilon M_{m}(E)$ for which $S^{-1} B S=$ $B^{T}=B^{*}$. Calculation shows that

$$
\left(R S R^{*}\right)^{-1} A\left(R S R^{*}\right)=A^{*}
$$

as $[F: E]=2, \varphi^{2}$ is the identity automorphism and $R S R^{*}$ is φ-Hermitian.
Received August 2, 1965. Research supported by a Directed Research Grant from Oregon State University and by NSF Grant GP-4051.

