THE LEXICOGRAPHIC PRODUCT OF GRAPHS

BY ROBERT L. HEMMINGER

1. In [1] Sabidussi gave necessary and sufficient conditions for $G(X \circ Y) = G(X) \circ G(Y)$ (" \circ " denotes the lexicographic product on graphs and the wreath product on groups) if X and Y are from appropriate classes of graphs. In [2] he extended this result by enlarging the classes of graphs under consideration. We now complete the problem by proving the following:

THEOREM. For graphs X and Y, $G(X \circ Y) = G(X) \circ G(Y)$ if and only if

- (1) Y is connected if $R \neq \Delta$
- (2) Y' is connected if $S \neq \Delta$.
- (3) If Y has a set of vertex disjoint section graphs $\{Y_{\alpha}\}_{\alpha\in\Omega}$, $|\Omega| \geq 2$, such that $Y_{\alpha} \approx Y$ for all $\alpha \in \Omega \{1\}$, $1 \in \Omega$, $V(Y) = \bigcup_{\alpha\in\Omega} V(Y_{\alpha})$, and for $\alpha, \beta \in \Omega$ either all or none of the possible edges between Y_{α} and Y_{β} exist in Y, then X does not contain a section graph T on $V(T) = \{x_{\alpha}\}_{\alpha\in\Omega}$ such that (a) $V(X, x_{\alpha}) V(T) = V(X, x_{\beta}) V(T)$ for all $\alpha, \beta \in \Omega$, (b) $[x_{\alpha}, x_{\beta}] \in E(X)$ if and only if $[y_{\alpha}, y_{\beta}] \in E(Y)$ for some $y_{\alpha} \in V(Y_{\alpha})$ and $y_{\beta} \in V(Y_{\beta})$, and (c) $[x_{1}, x_{\alpha}] \in E(X)$ for all $\alpha \in \Omega \{1\}$.

By a graph X we mean a set V(X) (called the vertices of X) together with a set E(X) (called the edges of X) of unordered pairs of *distinct* elements of V(X). Unordered pairs will be denoted by brackets. For $x \in V(X)$ we will usually write $x \in X$. For a set A, |A| denotes the cardinality of A and by |X| we mean |V(X)|. For $x \in X$ we put $V(X, x) = \{x' \in V(X) : [x, x'] \in E(X)\}$ and d(X, x) = |V(X, x)|. R and S are equivalence relations on V(X) if we set xRx' if and only if V(X, x) =V(X, x') and xSx' if and only if $V(X, x) \cup \{x\} = V(X, x') \cup \{x'\}$. $\Delta =$ $\{(x, x) : x \in V(X)\}$. By the complement of a graph X we mean the graph X' given by V(X') = V(X) and $E(X') = \{[x, x'] : x, x' \in V(X), x \neq x', [x, x'] \notin V(X)\}$ E(X). By G(X) we denote the set of all permutations φ of V(X) such that $[\varphi x, \varphi x'] \in E(X)$ if and only if $[x, x'] \in E(X)$. We say that a graph T is a section graph of X on V(T) if $V(T) \subseteq V(X)$ and $E(T) = \{[x, x'] \in E(X) : x, x' \in V(T)\}$. The lexicographic product of two graphs X and Y is the graph $X \circ Y$ given by $V(X \circ Y) = V(X) \times V(Y)$ and $E(X \circ Y) = \{[(x, y), (x', y')] : [x, x'] \in E(X)\}$ or x = x' and $[y, y'] \in E(Y)$. If G and H are permutation groups on sets A and B respectively, then the wreath product of G and H is the group $G \circ H$ of all permutations f on $A \times B$ for which there exist g εG and $h_a \varepsilon H$ for each a εA such that $f(a, b) = (ga, h_a b)$ for all $(a, b) \in A \times B$.

Received August 8, 1965. This paper was written while the author was a Research Participant with Oak Ridge Institute of Nuclear Studies.