CURVILINEAR OSCILLATIONS OF HOLOMORPHIC FUNCTIONS

BY J. E. MCMILLAN

Let f be a function with domain the open unit disc D : |z| < 1 and range in the Riemann sphere Ω . We say that the curve $\tau \subset D$ is an arc at 1 if $\tau \cup \{1\}$ is a Jordan arc. For an arc τ at 1, let C_{τ} denote the set $\{a \in \Omega: \text{ there exists a}$ sequence $\{z_n\} \subset \tau$ such that $z_n \to 1$ and $f(z_n) \to a\}$ of cluster values of f, on τ at 1, and let $|C_{\tau}|$ denote the diameter (in the chordal metric $\chi(a, b)$) of C_{τ} . It is clear that f has a limit at 1 on the arc τ at 1 if and only if $|C_{\tau}| = 0$. We prove

THEOREM 1. If f is holomorphic in D, then either there exists an arc τ at 1 such that $|C_{\tau}| = 0$ or there exists a positive number h such that if τ is any arc at 1, then $|C_{\tau}| \geq h$.

Remark. We emphasize that h depends only on f and the point 1 and is independent of the arc τ at 1.

Proof. Suppose that there does not exist a positive number h such that if τ is an arc at 1, then $|C_{\tau}| \geq h$. Let $\{\tau_n\}$ be a sequence of arcs at 1 such that $|C_n| \to 0$, where $C_n = C_{\tau_n}$. By choosing a subsequence of $\{\tau_n\}$ if necessary, we may suppose that there exists $a \in \Omega$ (possibly $a = \infty$) such that

(1)
$$|\{a\} \cup C_n| \to 0 (n \to \infty).$$

Since there are only countably many points of Ω that are projections of branch points of the Riemann surface of f over Ω , we can choose $\{r_n\}$ such that $0 < r_{n+1} < r_n (n \ge 1), r_n \to 0$, and each component of $\{z : \chi(f(z), a) = r_n\}$ has no multiple points. Let

$$\Delta_n = \left\{ |z - 1| < \frac{1}{n} \right\} \cap \{ z : \chi(f(z), a) < r_n \}.$$

By noting (1) and again choosing a subsequence of $\{\tau_n\}$ if necessary, we may suppose that

$$C_n \subset \{w \in \Omega : \chi(w, a) < r_n\};$$

and by choosing subarcs (that are arcs at 1) of the arcs τ_n , we may suppose that $\tau_n \subset \Delta_n$. Then since $\Delta_{n+1} \subset \Delta_n (n \ge 1)$, we have

(2) $\tau_m \subset \Delta_n \quad (m \ge n).$

It must be the case that either

(3) for each n there are at most two components Δ of Δ_n such that there exists m > n such that $\tau_m \subset \Delta$,

Received April 14, 1965; in revised form, July 29, 1965.