CURVILINEAR OSCILLATIONS OF HOLOMORPHIC FUNCTIONS

by J. E. McMillan

Let f be a function with domain the open unit disc $D:|z|<1$ and range in the Riemann sphere Ω. We say that the curve $\tau \subset D$ is an arc at 1 if $\tau \cup\{1\}$ is a Jordan arc. For an arc τ at 1 , let C_{τ} denote the set $\{a \varepsilon \Omega$: there exists a sequence $\left\{z_{n}\right\} \subset \tau$ such that $z_{n} \rightarrow 1$ and $\left.f\left(z_{n}\right) \rightarrow a\right\}$ of cluster values of f, on τ at 1 , and let $\left|C_{\tau}\right|$ denote the diameter (in the chordal metric $\chi(a, b)$) of C_{τ}. It is clear that f has a limit at 1 on the arc τ at 1 if and only if $\left|C_{\tau}\right|=0$. We prove

Theorem 1. If f is holomorphic in D, then either there exists an arc τ at 1 such that $\left|C_{\tau}\right|=0$ or there exists a positive number h such that if τ is any arc at 1 , then $\left|C_{\tau}\right| \geq h$.

Remark. We emphasize that h depends only on f and the point 1 and is independent of the are τ at 1 .

Proof. Suppose that there does not exist a positive number h such that if τ is an arc at 1 , then $\left|C_{r}\right| \geq h$. Let $\left\{\tau_{n}\right\}$ be a sequence of arcs at 1 such that $\left|C_{n}\right| \rightarrow 0$, where $C_{n}=C_{\tau_{n}}$. By choosing a subsequence of $\left\{\tau_{n}\right\}$ if necessary, we may suppose that there exists $a \varepsilon \Omega$ (possibly $a=\infty$) such that

$$
\begin{equation*}
\left|\{a\} \cup C_{n}\right| \rightarrow 0(n \rightarrow \infty) . \tag{1}
\end{equation*}
$$

Since there are only countably many points of Ω that are projections of branch points of the Riemann surface of f over Ω, we can choose $\left\{r_{n}\right\}$ such that $0<$ $r_{n+1}<r_{n}(n \geq 1), r_{n} \rightarrow 0$, and each component of $\left\{z: \chi(f(z), a)=r_{n}\right\}$ has no multiple points. Let

$$
\Delta_{n}=\left\{|z-1|<\frac{1}{n}\right\} \cap\left\{z: \chi(f(z), a)<r_{n}\right\}
$$

By noting (1) and again choosing a subsequence of $\left\{\tau_{n}\right\}$ if necessary, we may suppose that

$$
C_{n} \subset\left\{w \varepsilon \Omega: \chi(w, a)<r_{n}\right\}
$$

and by choosing subarcs (that are arcs at 1) of the $\operatorname{arcs} \tau_{n}$, we may suppose that $\tau_{n} \subset \Delta_{n}$. Then since $\Delta_{n+1} \subset \Delta_{n}(n \geq 1)$, we have

$$
\begin{equation*}
\tau_{m} \subset \Delta_{n} \quad(m \geq n) \tag{2}
\end{equation*}
$$

It must be the case that either
(3) for each n there are at most two components Δ of Δ_{n} such that there exists $m>n$ such that $\tau_{m} \subset \Delta$,

Received April 14, 1965; in revised form, July 29, 1965.

