A CHARACTERIZATION OF THE SET OF ASYMPTOTIC VALUES OF A FUNCTION HOLOMORPHIC IN THE UNIT DISC

BY FRANK B. RYAN

1. The set of asymptotic values, or *asymptotic set*, of a function meromorphic in $\mathfrak{U} = \{|z| < 1\}$ is characterized as an analytic subset of the extended complex plane \mathfrak{W} [1], [5]. However, easy examples show that there exist analytic sets in the plane which cannot be the asymptotic set of any function *holomorphic* in \mathfrak{U} , for example the analytic set $\{0 \le x \le 1\}$. In the previous note a characterization of the asymptotic set of a holomorphic function mapping \mathfrak{U} onto itself was obtained:

THEOREM 1. A set α is the asymptotic set of a holomorphic function f mapping α onto itself if, and only if, α is an analytic subset of α^- and for every r, 0 < r < 1, there exists a holomorphic function f_r mapping α into itself with the properties

- (a) α contains the asymptotic set of f_r ,
- (b) f_r maps a Jordan region topologically onto $\{|w| \leq r\}$.

Our present objective is to extend this characterization to unrestricted functions holomorphic in \mathfrak{U} . We shall find that this characterization also serves for functions which are normal holomorphic in the sense of Lehto and Virtanen [2], and hence for functions in MacLane's class \mathcal{A} [4].

The following two sections introduce notation and facts used to establish the main result, Theorem 4. In addition, Theorem 3 extends results of MacLane [4] and McMillan [6] concerning the class \mathcal{A} . We conclude with a result concerning normal holomorphic functions.

2. If S is a set then S^- , S', and ∂S denote its closure, complement, and boundary. If f is a complex valued function defined in some domain, then $\alpha(f)$ denotes the asymptotic set of f. In the previous note we obtained some necessary conditions on $\alpha(f)$ for f holomorphic in \mathfrak{U} , namely,

THEOREM 2. If f is holomorphic in \mathfrak{u} with $f(\mathfrak{u}) = D$, then

- (a) $\alpha(f)$ is analytic,
- (b) $\partial D \subset \alpha(f)^- \subset D^-$,
- (c) if $\zeta \in \partial D$ is inaccessible from D, then $\zeta \notin \Omega(f)$,
- (d) if $\zeta \in \partial D \alpha(f)$ is accessible from D, then every arc in D to ζ must meet $\alpha(f)$.

Received August 30, 1965. This research was supported in part by the Air Force Office of Scientific Research under Contract No. AFOSR 62-233.