
A NOTE ON QUADRICS OVER A FINITE FIELD

BY L. CARLITZ

1. Let F denote the finite field of odd order q. Eckford Cohen [1] has proved
the following results.

I. Let S denote an n-dimensional aiTine space with F as base field. If n >_ 4
there are no hyperplanes of S contained in the complement of the quadric
Q,,(a) defined by

ax, + - a,,x a (a, a,, 0).

II. Let T. denote an n-dimensional projective space with base field F. If
n >_ 3, a quadric Q, of T. defined by

aoXo + ax, + + a,,x 0 (aoa, a,, O)

has at least one point in common with a given hyperplane

boxo - bx - - b,x,, O.

Let Q. denote the quadric of T. defined by

(1.1) aoz - a,z - - a,,z 0 (aoa, a,, 0).

There is no loss in generality in assuming that the quadratic form in (1.1) is
in diagonal form. If (a) denotes the nonprincipal quadratic character of F,
that is (a) + 1, --1 or 0 according as a is a square, a nonsquare or zero in
F, then we define the exterior of Q= as the set of points (xo, x, x.) of T.
such that

b(Q(xo, X Xa)) +1.

Similarly the interior of Q, is the set of points of T. such that

(Q(xo x x,,)) -1.

For a given hyperplane L defined by

(1.2) boxo W bx - @ b,,x,, 0

we let N(L,) denote the number of points of L in the exterior of Q, and N,(L,,)
the number of points of L, in the interior of Q The numbers N(L,) and
N,(L,) are determined explicitly below (see Theorem 1). Moreover we find as a
corollary of the theorem that N(L,) N(L,) or N(L,,)
Finally (Theorem 4) we determine the number of points in the interior and in
the exterior of Q..
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