A NOTE ON QUADRICS OVER A FINITE FIELD

by L. Carlitz

1. Let F denote the finite field of odd order q. Eckford Cohen [1] has proved the following results.
I. Let S_{n} denote an n-dimensional affine space with F as base field. If $n \geq 4$ there are no hyperplanes of S_{n} contained in the complement of the quadric $Q_{n}(a)$ defined by

$$
a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}=a \quad\left(a_{1} \cdots a_{n} \neq 0\right)
$$

II. Let T_{n} denote an n-dimensional projective space with base field F. If $n \geq 3$, a quadric Q_{n} of T_{n} defined by

$$
a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}=0 \quad\left(a_{0} a_{1} \cdots a_{n} \neq 0\right)
$$

has at least one point in common with a given hyperplane

$$
b_{0} x_{0}+b_{1} x_{1}+\cdots+b_{n} x_{n}=0
$$

Let Q_{n} denote the quadric of T_{n} defined by

$$
\begin{equation*}
a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}=0 \quad\left(a_{0} a_{1} \cdots a_{n} \neq 0\right) \tag{1.1}
\end{equation*}
$$

There is no loss in generality in assuming that the quadratic form in (1.1) is in diagonal form. If $\psi(a)$ denotes the nonprincipal quadratic character of F, that is $\psi(a)=+1,-1$ or 0 according as a is a square, a nonsquare or zero in F, then we define the exterior of Q_{n} as the set of points ($x_{0}, x_{1}, \cdots, x_{n}$) of T_{n} such that

$$
\psi\left(Q\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right)=+1
$$

Similarly the interior of Q_{n} is the set of points of T_{n} such that

$$
\psi\left(Q\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right)=-1 .
$$

For a given hyperplane L_{n} defined by

$$
\begin{equation*}
b_{0} x_{0}+b_{1} x_{1}+\cdots+b_{n} x_{n}=0 \tag{1.2}
\end{equation*}
$$

we let $N_{E}\left(L_{n}\right)$ denote the number of points of L_{n} in the exterior of Q_{n} and $N_{I}\left(L_{n}\right)$ the number of points of L_{n} in the interior of Q_{n}. The numbers $N_{E}\left(L_{n}\right)$ and $N_{I}\left(L_{n}\right)$ are determined explicitly below (see Theorem 1). Moreover we find as a corollary of the theorem that $N_{E}\left(L_{n}\right)=N_{I}\left(L_{n}\right)$ or $N_{E}\left(L_{n}\right)+N_{I}\left(L_{n}\right)=q^{n-1}$. Finally (Theorem 4) we determine the number of points in the interior and in the exterior of Q_{n}.

Received June 17, 1965. Supported in part by NSF grant GP-1593.

