A NOTE ON QUADRICS OVER A FINITE FIELD

BY L. CARLITZ

1. Let F denote the finite field of odd order q. Eckford Cohen [1] has proved the following results.

I. Let S_n denote an *n*-dimensional affine space with F as base field. If $n \ge 4$ there are no hyperplanes of S_n contained in the complement of the quadric $Q_n(a)$ defined by

$$a_1x_1^2 + \cdots + a_nx_n^2 = a \qquad (a_1 \cdots a_n \neq 0).$$

II. Let T_n denote an *n*-dimensional projective space with base field F. If $n \geq 3$, a quadric Q_n of T_n defined by

$$a_0x_0^2 + a_1x_1^2 + \cdots + a_nx_n^2 = 0$$
 $(a_0a_1 \cdots a_n \neq 0)$

has at least one point in common with a given hyperplane

$$b_0x_0+b_1x_1+\cdots+b_nx_n=0.$$

Let Q_n denote the quadric of T_n defined by

(1.1)
$$a_0x_0^2 + a_1x_1^2 + \cdots + a_nx_n^2 = 0 \quad (a_0a_1 \cdots a_n \neq 0).$$

There is no loss in generality in assuming that the quadratic form in (1.1) is in diagonal form. If $\psi(a)$ denotes the nonprincipal quadratic character of F, that is $\psi(a) = +1$, -1 or 0 according as a is a square, a nonsquare or zero in F, then we define the *exterior* of Q_n as the set of points (x_0, x_1, \dots, x_n) of T_n such that

$$\psi(Q(x_0, x_1, \cdots, x_n)) = +1.$$

Similarly the *interior* of Q_n is the set of points of T_n such that

$$\psi(Q(x_0, x_1, \cdots, x_n)) = -1.$$

For a given hyperplane L_n defined by

$$(1.2) b_0 x_0 + b_1 x_1 + \cdots + b_n x_n = 0$$

we let $N_E(L_n)$ denote the number of points of L_n in the exterior of Q_n and $N_I(L_n)$ the number of points of L_n in the interior of Q_n . The numbers $N_E(L_n)$ and $N_I(L_n)$ are determined explicitly below (see Theorem 1). Moreover we find as a corollary of the theorem that $N_E(L_n) = N_I(L_n)$ or $N_E(L_n) + N_I(L_n) = q^{n-1}$. Finally (Theorem 4) we determine the number of points in the interior and in the exterior of Q_n .

Received June 17, 1965. Supported in part by NSF grant GP-1593.