A NOTE ON UNITARY OPERATORS IN C^{*}-ALGEBRAS

By B. Russo and H. A. Dye

1. Introduction. We show that, in any C^{*}-algebra Q, convex linear combinations of unitary operators are uniformly dense in the unit sphere of a. In other terms, the unit sphere in \mathbb{Q} is the closed convex hull of its normal extreme points, even though non-normal extreme points will in general be present. This fact has several useful technical implications. For example, it follows that the norm of a linear mapping ϕ between C^{*}-algebras can be computed using only normal operators, that is, from the effect of ϕ on abelian *-subalgebras. In addition, we show that a linear mapping between C^{*}-algebras which conserves the identity and sends unitary operators into unitary operators is a C^{*}-homomorphism.
2. The main result. Let \mathfrak{Q} be a C^{*}-algebra, that is, a uniformly closed selfadjoint algebra of operators on some complex Hilbert space H. Throughout, we assume that \mathbb{Q} contains the identity operator $I . \quad U(\mathbb{Q})$ will denote the set of unitary operators in \mathbb{Q}, and $\operatorname{co}(U(\mathbb{Q}))$ the convex hull of $U(\mathbb{Q})$.

Lemma 1. In any von Neumann algebra $M, c o(U(M))$ is weakly dense in the unit sphere of M.

Proof. This follows readily from the known fact that, in a von Neumann algebra M with no finite summands, the weak closure of $U(M)$ is the unit sphere ([3, Theorem 1 et seq.]). For completeness, however, we include a proof of the lemma.

Let C denote the weak closure of $c o(U(M))$. To show that C is the unit sphere, by Krein-Mil'man, it suffices to show that C contains all extreme points of the unit sphere. Using [5, Theorem 1], it follows readily that these are the partial isometries V in M such that, for some central projection $D, V^{*} V \geq D$ and $V V^{*} \geq I-D$. Therefore, replacing M by appropriate direct summands and noting that $C^{*}=C$, it suffices to consider the case $V^{*} V=I$. In addition, we can assume that $V V^{*}=P \neq I$. Given vectors $x_{i}, y_{i}(i=1, \cdots, n)$ and $\epsilon>0$, we will exhibit a unitary U in M such that $\left|\left((U-V) x_{i}, y_{i}\right)\right|<\epsilon$, for all i.

Let \mathfrak{M} be the range of $I-P$. Then the $V^{n} \mathfrak{M}$ are mutually orthogonal $(n \geq 0)$ and the restriction of V to the orthogonal complement \mathfrak{M} of $\oplus_{n=0}^{\infty} V^{n} \mathfrak{M}$ is unitary. Let Q_{n} be the projection on $V^{n} \mathfrak{M}$, and choose n such that $\left\|\sum_{k>n} Q_{k} x_{i}\right\|<\epsilon / 2\left(1+\max \left\|y_{j}\right\|\right)$, for all i. Let $U=V$ on the subspace $\mathfrak{N} \oplus \mathfrak{M} \oplus \cdots \oplus V^{n} \mathfrak{M},=V^{*(n+1)}$ on $V^{n+1} \mathfrak{M}$, and $=I$ on $\oplus_{l>n+1} V^{k} \mathfrak{M}$. Then

Received April 27, 1965. This research was supported by a National Science Foundation grant.

