A NOTE ON UNITARY OPERATORS IN C*-ALGEBRAS

BY B. RUSSO AND H. A. DYE

1. Introduction. We show that, in any C^* -algebra \mathfrak{A} , convex linear combinations of unitary operators are uniformly dense in the unit sphere of \mathfrak{A} . In other terms, the unit sphere in \mathfrak{A} is the closed convex hull of its normal extreme points, even though non-normal extreme points will in general be present. This fact has several useful technical implications. For example, it follows that the norm of a linear mapping ϕ between C^* -algebras can be computed using only normal operators, that is, from the effect of ϕ on abelian *-subalgebras. In addition, we show that a linear mapping between C^* -algebras which conserves the identity and sends unitary operators into unitary operators is a C^* -homomorphism.

2. The main result. Let α be a C*-algebra, that is, a uniformly closed selfadjoint algebra of operators on some complex Hilbert space H. Throughout, we assume that α contains the identity operator I. $U(\alpha)$ will denote the set of unitary operators in α , and $co(U(\alpha))$ the convex hull of $U(\alpha)$.

LEMMA 1. In any von Neumann algebra M, co (U(M)) is weakly dense in the unit sphere of M.

Proof. This follows readily from the known fact that, in a von Neumann algebra M with no finite summands, the weak closure of U(M) is the unit sphere ([3, Theorem 1 et seq.]). For completeness, however, we include a proof of the lemma.

Let C denote the weak closure of co(U(M)). To show that C is the unit sphere, by Krein-Mil'man, it suffices to show that C contains all extreme points of the unit sphere. Using [5, Theorem 1], it follows readily that these are the partial isometries V in M such that, for some central projection D, $V^*V \ge D$ and $VV^* \ge I - D$. Therefore, replacing M by appropriate direct summands and noting that $C^* = C$, it suffices to consider the case $V^*V = I$. In addition, we can assume that $VV^* = P \ne I$. Given vectors x_i , y_i $(i = 1, \dots, n)$ and $\epsilon > 0$, we will exhibit a unitary U in M such that $|((U - V)x_i, y_i)| < \epsilon$, for all i. Let \mathfrak{M} be the range of I - P. Then the $V^{\mathfrak{M}}\mathfrak{M}$ are mutually orthogonal $(n \ge 0)$ and the restriction of V to the orthogonal complement \mathfrak{N} of $\bigoplus_{n=0}^{\infty} V^n\mathfrak{M}$ is unitary. Let Q_n be the projection on $V^n\mathfrak{M}$, and choose n such that $||\sum_{k>n} Q_k x_i|| < \epsilon/2(1 + \max ||y_i||)$, for all i. Let U = V on the subspace $\mathfrak{M} \oplus \mathfrak{M} \oplus \cdots \oplus V^n\mathfrak{M}, = V^{*(n+1)}$ on $V^{n+1}\mathfrak{M}$, and = I on $\bigoplus_{k>n+1} V^k\mathfrak{M}$. Then

Received April 27, 1965. This research was supported by a National Science Foundation grant.