APPROXIMATION OF HARMONIC FUNCTIONS OF THREE VARIABLES BY HARMONIC POLYNOMIALS

By Stefan Bergman

1. Introduction. The question of approximation of harmonic functions of three variables by harmonic polynomials in simply connected domains is of considerable interest, in particular, when solving a boundary value problem and using harmonic polynomials orthonormal in a simply connected domain b^3 .

Results of this kind can be obtained in various ways, e.g., by those indicated in I and II.

I. One uses the integral operator

(1)
$$\mathbf{B}_{\mathfrak{z}}(f(u,\,\zeta)) \equiv \frac{1}{2\pi i} \int_{|\zeta|=1} f(u,\,\zeta) \, \frac{d\zeta}{\zeta} = H(x,\,y,\,z)$$

transforming analytic functions of *two* complex variables $u = x + \zeta (iy + z)/2 + \zeta^{-1}(iy - z)/2$ and ζ into harmonic functions of three variables. Using the theorems about approximation of $f(u, \zeta)$ by polynomials and the representation of f in terms of H, one obtains theorems about the degree of approximation. See [7; 43].

The theory of approximation of functions of one complex variable is developed to a larger extent than that of two complex variables. Consequently it is useful to determine subclasses of harmonic functions H(x, y, z) whose \mathbf{B}_{s} -associates $f(u, \zeta)$ are functions of one complex variable u multiplied by a fixed factor $l(\zeta)$. Using then results by Walsh [19], Mergeljan [16] and others for analytic functions of one complex variable, one obtains theorems on the degree of approximation of functions H belonging to these subclasses of harmonic functions.

Remark. The study of subclasses of harmonic functions possessing certain properties is of importance also for various other purposes. See [3], [4], [8], [10], [11], [12], [13], [17], [18].

In the present paper we set: $l(\zeta) = \zeta^{\epsilon}(\kappa \text{ an integer})$ and denote by **S** the class of functions generated by (1) with $f(u, \zeta) = p(u)\zeta^{\epsilon}$. Here p(u) is an arbitrary analytic function of u, regular at the origin, and κ is a fixed integer. In this special case we obtain for the inverse of **B**₃ an expression different from that derived in [2], see also [7; 43]. Using this method of attack, in §2 of the present paper the problem of approximation (by polynomials) of functions $H(x, y, z) \in \mathbf{S}$ is reduced to the following question in the theory of functions p(u) of one complex variable:

Suppose p(u) is regular in a (simply connected) domain B^2 , we have to deter-Received April 9, 1965. This work was supported in part by NSF Grant 2735.