THE SIZE OF THE RIEMANN ZETA-FUNCTION AT PLACES SYMMETRIC WITH RESPECT TO THE POINT 1/2

BY R. D. DIXON AND LOWELL SCHOENFELD

Received December 10, 1964.

In a recent paper, Spira [2] proves that for $t \ge 10$ and $\frac{1}{2} < \sigma < 1$, the inequality $|\zeta(1 - s)| > |\zeta(s)|$ holds except at the zeros of $\zeta(s)$; as usual, $s = \sigma + it$. Here we give a simpler proof of the following stronger version:

THEOREM . If $|t| \ge 6.8$ and $\sigma > \frac{1}{2}$, then $|\zeta(1-s)| > |\zeta(s)|$ except at the zeros of $\zeta(s)$.

Proof. The familiar functional equation is $\zeta(1-s) = g(s)\zeta(s)$ where

$$g(s) = 2(2\pi)^{-s}\Gamma(s) \cos \pi s/2 \qquad (=\chi(1-s)).$$

Clearly, g(s) is analytic for $t \neq 0$ so that |g(s)| is continuous for such s; putting $s_0 = \frac{1}{2} + it$ and noting that

$$|g(s_0)| = |\zeta(\frac{1}{2} - it)|/|\zeta(\frac{1}{2} + it)| = 1$$

holds for each t such that $\zeta(\frac{1}{2} + it) \neq 0$, the continuity of |g(s)| guarantees that $|g(s_0)| = 1$ holds for all real $t \neq 0$. Defining $h(s) = \log |g(s)/g(s_0)|$, it therefore suffices to prove that h(s) > 0 whenever $\sigma > \frac{1}{2}$ and $|t| \geq 6.8$ since the inequality for h(s) implies that |g(s)| > 1.

From now on, let $\sigma > \frac{1}{2}$ and $t \neq 0$. We have

$$\begin{split} h(s) &= \log |\Gamma(s)| - \log |\Gamma(s_0)| + \frac{1}{2} \log \frac{\cosh \pi t + \cos \pi \sigma}{\cosh \pi t} - (\sigma - \frac{1}{2}) \log 2\pi \\ &\geq (\sigma - \frac{1}{2}) \left\{ \frac{\partial}{\partial \sigma} \log |\Gamma(\sigma + it)| \right\}_{\sigma = \sigma_1} \\ &+ \frac{1}{2} \log \left\{ 1 - \frac{|\sin \pi (\sigma - \frac{1}{2})|}{\cosh \pi t} \right\} - (\sigma - \frac{1}{2}) \log 2\pi \end{split}$$

where, by the law of the mean, σ_1 is a suitable number between $\frac{1}{2}$ and σ . Now $\frac{1}{2}\log(1-x) + x$ has a non-negative derivative for $x \leq \frac{1}{2}$ and is zero at x = 0; hence it is non-negative for $0 \leq x \leq \frac{1}{2}$ so that

$$\frac{1}{2} \log \left\{ 1 - \frac{|\sin \pi(\sigma - \frac{1}{2})|}{\cosh \pi t} \right\} \ge -\frac{|\sin \pi(\sigma - \frac{1}{2})|}{\cosh \pi t} > -2\pi \frac{\sigma - \frac{1}{2}}{e^{\pi + t}}$$

provided $|t| \geq \frac{1}{2}$. Consequently,

(1)
$$\frac{h(s)}{\sigma - \frac{1}{2}} > \left\{ \frac{\partial}{\partial \sigma} \log |\Gamma(\sigma + it)| \right\}_{\sigma = \sigma_1} - 2\pi e^{-\pi |t|} - \log 2\pi.$$
291