AN HERMITIAN MATRIX EQUATION OVER A FINITE FIELD

By John H. Hodges

1. Introduction. Let $G F(q)$ denote the finite field of $q=p^{n}$ elements, p an odd prime. Let A and B be Hermitian matrices over $G F\left(q^{2}\right)$ of order e, rank m and order t, rank r, respectively. In this paper the number $N(A, B, k)$ of $e \times t$ matrices U of rank k over $G F\left(q^{2}\right)$ is determined which satisfy the equation

$$
\begin{equation*}
U^{*} A U=B \tag{1.1}
\end{equation*}
$$

where the asterisk denotes conjugate (with respect to $G F(q)$) transpose. First (Theorem 1), a formula is obtained which gives $N(A, B, k)$ as a sum involving the numbers $N\left(I_{m}, B_{0}, s\right)$, where I_{m} denotes the identity of order m, $B_{0}=\operatorname{diag}\left(B_{1}, 0\right)$ is Hermitely congruent to B so that B_{1} is nonsingular of order r, and s runs from r to $\min (m, t, k)$. Then (Theorem 2), the number $N\left(I_{m}, B_{0}, s\right)$ is found in terms of certain exponential sums $H(t, r, z)$ whose explicit values have been found previously by L. Carlitz and the author [3]. Theorem 2 is proved by expressing the desired number as a certain finite trigonometric sum which is then evaluated. Together with the formulas for $H(t, r, z)$, Theorems 1 and 2 serve to give $N(A, B, k)$ explicitly.

This paper is motivated by the paper [3] by Carlitz and the author in which they determined the total number $N_{t}(A, B)$ of solutions U of (1.1) of arbitrary rank when $e=m$. For $e=m, N_{t}(A, B)$ is clearly the sum of $N(A, B, k)$ over all k such that $r \leq k \leq \min (m, t)$.

The skew analog of the problem treated here is already scheduled to appear [6] and the analogous symmetric and bilinear equations have been considered in separate papers [5] and [4], respectively. The symmetric equation is related to a paper [2] by L. Carlitz which is in part a generalization of some results of C. L. Siegel [8] on quadratic forms $\bmod p$.
2. Notation and preliminaries. Let $G F(q)$ denote the finite field of $q=p^{n}$ elements, p an odd prime. Let θ be an element of $G F\left(q^{2}\right)$ such that $\theta \notin G F(q)$ but $\theta^{2} \varepsilon G F(q)$. Then if $\alpha \varepsilon G F\left(q^{2}\right), \alpha=a+b \theta$ for $a, b \varepsilon G F(q)$. The element $\bar{\alpha}=a-b \theta$ of $G F\left(q^{2}\right)$ is called the conjugate of α.

Throughout this paper, except as indicated, Roman capitals will denote matrices over $G F\left(q^{2}\right) . \quad X(m, t)$ will denote a matrix of m rows and t columns and $X(m, t ; s)$ a matrix of the same size which has rank s. In particular, $I(m, t ; s)$ will denote the $m \times t$ matrix which has I_{s}, the identity of order s, in its upper left-hand corner and zeros elsewhere. If $X=X(m, t ; s)$, it is well known

[^0]
[^0]: Received November 3, 1964. The work on this paper has been supported by National Science Foundation Research Grant.

