THE FOURIER SERIES OF GEGENBAUER'S FUNCTION

By B. C. CARLSON AND W. H. GREIMAN

1. Introduction. If N is a positive integer, the Gegenbauer polynomial C_N^r is known to have the representation [3, vol. 2; 175]

(1.1)
$$C_N^{\nu}(\cos \theta) = \sum_{m=0}^N \frac{(\nu)_m(\nu)_{N-m}}{m! (N-m)!} \cos (N-2m) \theta,$$

where $(\nu)_m = \Gamma(\nu + m)/\Gamma(\nu)$. The Fourier series of Gegenbauer's function $C^{\nu}_{\alpha}(\cos \theta)$ with general (possibly complex) α does not appear to have been given previously, even in the special case of Legendre's function $P_{\alpha} = C^{\frac{1}{2}}_{\alpha}$. We shall find that

(1.2)

$$C_{\alpha}^{\nu}(\cos \theta) = \frac{1}{2}A_{0} + \sum_{n=1}^{\infty} A_{n} \cos n\theta, \quad (\operatorname{Re} \nu < 1),$$

$$A_{n} = \left\{1 + \frac{\sin \pi(\nu + \alpha + n)}{\sin \pi\nu}\right\} \frac{\Gamma\left(\nu + \frac{\alpha + n}{2}\right)\Gamma\left(\nu + \frac{\alpha - n}{2}\right)}{[\Gamma(\nu)]^{2}\Gamma\left(1 + \frac{\alpha + n}{2}\right)\Gamma\left(1 + \frac{\alpha - n}{2}\right)}.$$

If Re $\nu \geq 1$, the Fourier coefficients do not exist for general α because $C_{\alpha}^{\nu}(\cos \theta)$ is not integrable over an interval containing the point $\theta = \pi$. If Re $\nu < 1$ and α is a positive integer N, the first factor of A_n vanishes if N + n is odd; (1.2) then reduces to (1.1).

We remark that Gegenbauer's function (multiplied by a constant to give it the value unity at $\theta = 0$) has a nicely symmetrical expression in the notation of the hypergeometric R function [1]:

(1.3)
$$\frac{\Gamma(2\nu)\Gamma(\alpha+1)}{\Gamma(2\nu+\alpha)} C^{\nu}_{\alpha}(\cos\theta) = R(-\alpha;\nu,\nu;e^{i\theta},e^{-i\theta})$$
$$= 2^{\nu-\frac{1}{2}}\Gamma(\nu+\frac{1}{2})(\sin\theta)^{\frac{1}{2}-\nu}P^{\frac{1}{2}-\nu}_{\alpha+\nu-\frac{1}{2}}(\cos\theta),$$

where P is an associated Legendre function. An important special case is

(1.4)
$$C^{\frac{1}{2}}(\cos \theta) = R(-\alpha; \frac{1}{2}, \frac{1}{2}; e^{i\theta}, e^{-i\theta}) = P_{\alpha}(\cos \theta).$$

2. The Fourier coefficients. Gegenbauer's function is defined [3, vol. 1;

Received September 28, 1964. This work was supported by the Ames Laboratory of the U. S. Atomic Energy Commission and by the National Aeronautics and Space Administration under Grant NsG-293 to Iowa State University.