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Let C denote the algebra of all continuous real-valued functions on a com-
pact (Hausdorff) space (X, ), with the algebra operations defined pointwise.
The main results of the present paper show that the algebra of Baire functions
generated by C has a particularly simple structure if and only if the topo-
logical space (X, fl) is dispersed. (A dispersed space is one which has no non-
void perfect subsets.)
More precisely, we show that there are only two classes of spaces (X, /).

If (X, fl) is dispersed, then every Baire function is the pointwise limit of a se-
quence of continuous functions (i.e., has Baire order _< 1). On the other hand,
if, (X, ) is not dispersed, then, in the following sense, there exist Baire functions
of every order: There is a uniformly closed subalgebra S of C such that for
every countable ordinal v the v-th iteration of the sequential closure of S is
not sequentially closed. The first case is studied in 2 by exploiting a method
due to Rudin [8] for decomposing compact dispersed spaces. The second case
is studied in 3 by constructing, in an arbitrary non-dispersed compact space,
a "generalized Cantor set" and then utilizing the classical theorem for non-
dispersed complete metric spaces.

Terminology and notation. The algebra of all real-vMued functions on a
set X is denoted by RX; the subalgebra of all bounded functions is (RX) *. If r

is one of several topologies on X, the subalgebra of ll r-continuous functions is
denoted by C C* is the subalgebra of all bounded such functions. The se-
quence ]1, ]2, is denoted by (f). In general, when no indexing set is speci-
fied, it is understood to be the set N of positive integers. Compact topological
spaces are ssumed to be Hausdorff.

1. Fundamental relations between the topologies. The algebra of Baire
functions on the compact space (X, ) is defined as the smallest class of bounded
functions containing C(X) and closed under the operation of taking point-
wise limits of sequences. Basic material on Baire functions can be found in
Lorch [4]. We summarize briefly some results from [4, 5] that will be needed
here. The weak topology on X generated by the Baire functions is called the
-topology. Thus the Baire functions form a (possibly proper) subalgebra of
C*, (X). The zero sets of C form a basis for the -open sets. The -topology is
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