SOME DIFFERENCE EQUATIONS

By L. Carlitz

1. J. A. Morrison [2] has considered the functional-difference equation

$$
\begin{align*}
& (x-\alpha)(\alpha-\beta)^{n-1} g_{n}(x) \tag{1.1}\\
& \quad=\alpha(x-\beta)^{n} g_{n-1}(\alpha)-x(\alpha-\beta)^{n} g_{n-1}(x) \quad(n=1,2,3, \cdots)
\end{align*}
$$

with $g_{0}(x)=1$ and $0<\alpha<\beta$, and has proved that

$$
\begin{equation*}
g_{n}(\alpha)=\frac{1}{n} \sum_{r=0}^{n-1}\binom{n}{r}\binom{n}{r+1} \alpha^{r} \beta^{n-r} . \tag{1.2}
\end{equation*}
$$

The writer [1] has introduced the coefficients $A_{r}^{(n)}$ occurring in

$$
\begin{equation*}
g_{n}(x)=\sum_{r=0}^{n-1} A_{r}^{(n)}(\alpha-\beta)^{-r}(x-\beta)^{r} \quad(n=1,2,3, \cdots) \tag{1.3}
\end{equation*}
$$

Riordan [3] has proved the explicit result:

$$
\begin{equation*}
A_{r}^{(n)}=(n-r) \sum_{i=1}^{r} \frac{1}{j}\binom{n-1}{j-1}\binom{r-1}{j-1} \alpha^{i} \beta^{n-i} \quad(1 \leq r<n) ; \tag{1.4}
\end{equation*}
$$

it is known that

$$
\begin{equation*}
A_{0}^{(n)}=\beta^{n} . \tag{1.5}
\end{equation*}
$$

Put $A_{r}^{(n)}=\beta^{n} a_{n r}$. Riordan obtained (1.4) by solving the difference equation

$$
\begin{equation*}
a_{n r}-a_{n-1, r}-a_{n, r-1}+a_{n-1, r-1}=\lambda a_{n-1, r-1}, \tag{1.6}
\end{equation*}
$$

where $0 \leq r<n$ and $a_{n n}=\delta_{n 0} ; \lambda=\alpha / \beta$.
In the present note we consider the equation (1.6) for all $n>1, r>1$ and such that

$$
\begin{equation*}
a_{n 1}=(n-1) \lambda, \quad a_{1 n}=-(n-1) \lambda . \tag{1.7}
\end{equation*}
$$

2. Put

$$
\begin{equation*}
F(x, y)=\sum_{n=1}^{\infty} \sum_{r=1}^{\infty} a_{n r} x^{n} y^{r} \tag{2.1}
\end{equation*}
$$

Then, by (1.6) and (1.7), we have

$$
\begin{gathered}
(1-x)(1-y) F(x, y)=\lambda x y F(x y)+(1-x) \sum_{n=1}^{\infty} a_{n 1} x^{n} y+(1-y) \sum_{r=1}^{\infty} a_{1 r} x y^{r}, \\
{[(1-x)(1-y)-\lambda x y] F(x, y)=\frac{\lambda x^{2} y}{1-x}-\frac{\lambda x y^{2}}{1-y}=\frac{\lambda x y(x-y)}{(1-x)(1-y)},}
\end{gathered}
$$

