A FUNCTIONAL-DIFFERENCE EQUATION

By John Riordan

1. J. A. Morrison [2] has considered the functional-difference equation

$$
\begin{align*}
& (x-\alpha)(\alpha-\beta)^{n-1} g_{n}(x) \tag{1.1}\\
& \quad=\alpha(x-\beta)^{n} g_{n-1}(\alpha)-x(\alpha-\beta)^{n} g_{n-1}(x), \quad n=1,2, \cdots
\end{align*}
$$

with $g_{0}(x)=1$ and $0<\alpha<\beta$, and has proved that

$$
g_{n}(\alpha)=\beta^{n} \sum_{r=0}^{n-1}\binom{n}{r}\binom{n-1}{r} \frac{y^{r}}{r+1}, \quad y=\alpha / \beta
$$

L. Carlitz [1] has looked for an explicit formula for $g_{n}(x)$, or more specifically for the coefficients $A_{r}^{(n)}$ in

$$
\begin{equation*}
g_{n}(x)=\sum_{r=0}^{n-1} A_{r}^{(n)} w^{r}, \quad w=(x-\beta) /(\alpha-\beta) \tag{1.2}
\end{equation*}
$$

Here it is shown that

$$
\begin{equation*}
A_{r}^{(n)}=\sum_{j=1}^{r} \frac{1}{j}\binom{n-1}{j-1}\binom{r-1}{j-1}(n-r) \beta^{n} y^{i}, \quad r=1,2, \cdots, n-1 . \tag{1.3}
\end{equation*}
$$

As Carlitz has shown, $A_{0}^{(n)}=\beta^{n}$.
2. It is convenient to write $A_{r}^{(n)}=\beta^{n} a_{n r}$. Substituting (1.2) into (1.1) leads to

$$
\begin{equation*}
(w-1) g_{n}(x)=\alpha w^{n} g_{n-1}(\alpha)-[\beta+(\alpha-\beta) w] g_{n-1}(x) . \tag{2.1}
\end{equation*}
$$

Then since $g_{n}(\alpha)=\Sigma A_{r}^{(n)}=\beta^{n} \Sigma a_{n r}$, it follows at once that

$$
\begin{equation*}
a_{n r}-a_{n, r-1}=a_{n-1, r}+(y-1) a_{n-1, r-1}-y \delta_{n r} \sum_{r=0}^{n-2} a_{n-1, r} \tag{2.2}
\end{equation*}
$$

which is the same as the pair of equations

$$
\begin{align*}
a_{n, n-1} & =y \sum_{r=0}^{n-2} a_{n-1, r} \tag{2.2a}\\
a_{n r}-a_{n-1, r} & =a_{n, r-1}+(y-1) a_{n-1, r-1}, \quad r=0,1, \cdots, n-1
\end{align*}
$$

The second of these along with the boundary condition $a_{n n}=\delta_{n 0}$ determines all coefficients $a_{n r}$. Thus in the first instance $a_{n 0}=a_{n-1,0}=\cdots=a_{00}=1$ while $a_{11}=0$ and $a_{n 1}-a_{n-1,1}=y$ imply $a_{n 1}=(n-1) y$. It follows in succession

