SOME CONTINUED FRACTIONS OF THE ROGERS-RAMANUJAN TYPE

By Basil Gordon

1. Introduction. The continued fraction of Rogers and Ramanujan is

$$
\begin{equation*}
1+\frac{x}{1+} \frac{x^{2}}{1+} \frac{x^{3}}{1+\cdots} \tag{1}
\end{equation*}
$$

Using the Rogers-Ramanujan identities it can be shown that for $|x|<1$, this fraction is equal to the product

$$
\prod_{n=1}^{\infty}\left(1-x^{5 n-3}\right)\left(1-x^{5 n-2}\right) /\left(1-x^{5 n-4}\right)\left(1-x^{5 n-1}\right)
$$

(cf [5; 290-295]). This result, together with the theory of singular moduli, enabled Ramanujan to evaluate (1) when $x=\exp (-\pi \sqrt{r}), r$ any positive rational number.

In this paper we consider a number of continued fractions analogous to (1), of which the following is typical:

$$
\begin{equation*}
1+x+\frac{x^{2}}{1+x^{3}+} \frac{x^{4}}{1+x^{5}+} \frac{x^{6}}{1+\cdots} \tag{2}
\end{equation*}
$$

For these fractions we obtain the results corresponding to those stated above. In each case the numerator and denominator are evaluated by using identities of the Rogers-Ramanujan type, several of which are due to Slater [7], [8]. Some of these identities have combinatorial interpretations similar to those given by MacMahon and Schur [6] for the Rogers-Ramanujan identities themselves. The fractions can then be evaluated whenever $x= \pm \exp (-\pi \sqrt{r})$ by a method similar to that used by Ramanujan (for a description of this see [9]). The following theorems concerning (2) will serve as an illustration.

Theorem 1. If $|x|<1$, then (2) converges to the value

$$
\prod_{n=1}^{\infty}\left(1-x^{8 n-5}\right)\left(1-x^{8 n-3}\right) /\left(1-x^{8 n-7}\right)\left(1-x^{8 n-1}\right)
$$

Theorem 2. The number of partitions of any positive integer n into parts $\equiv 1,4$, or $7(\bmod 8)$ is equal to the number of partitions of the form $n=n_{1}+n_{2}+\cdots+n_{k}$, where $n_{i} \geq n_{i+1}+2$, and $n_{i} \geq n_{i+1}+3$ if n_{i} is even $(1 \leq i \leq k-1)$.

Theorem 3. The number of partitions of n into parts $\equiv 3,4$, or $5(\bmod 8)$ is equal to the number of partitions $n=n_{1}+\cdots+n_{k}$ satisfying $n_{k} \geq 3$ in addition to the inequalities of Theorem 2.

Received July 7, 1964. The author is an Alfred P. Sloan Fellow.

