WEIGHTED TWO-LINE ARRAYS

By L. Carlitz

1. Introduction. The present paper is concerned with the problem of evaluating the sum

(1.1)
$$p(n, m; a) = \sum a^{\sum n_i + \sum m_i}$$
,

where the outer summation is extended over all two-line arrays

(1.2)
$$\begin{cases} n_1 & n_2 & n_3 & \cdots \\ m_1 & m_2 & m_3 & \cdots \end{cases}$$

subject to the conditions $n_1 = n, m_1 = m$,

$$(1.3) n_i > m_i , n_i > n_{i+1} , m_i > m_{i+1} , n_i \ge 0, m_i \ge 0.$$

This question was suggested by the following problem.

Let GF(q) denote the finite field of order q and let GF[q, x] denote the domain of polynomials in x with coefficients in GF(q). If $A, B \in GF[q, x]$ we seek the number of partitions

(1.4)
$$A = \sum U_i, \quad B = \sum V_i,$$

where U_i , V_i are normalized polynomials in GF[q, x] such that

 $\deg U_i = n_i$, $\deg V_i = m_i$, $\deg A = n$, $\deg B = m$

and the n_i , m_i satisfy (1.3). If P(A, B) denotes this number, it is easily seen that

(1.5)
$$P(A, B) = q^{-n-m} p(n, m; q)$$

We remark that the corresponding problem for simple partitions [1]

$$(1.6) A = \sum U_i$$

where

$$\deg U_i = n_i , \qquad \deg A = n = n_1 , \qquad n_i > n_{i+1}$$

,

is not difficult; the number of partitions in question is given by

(1.7)
$$\prod_{r=0}^{n-1} (1+q^r).$$

Returning to p(n, m; a) we remark that the case a = 1 has been treated in [2]. Put

(1.8)
$$p(n, m) = p(n, m; 1).$$

Received June 29, 1964. Supported in part by NSF grant GP-1593.