WEIGHTED TWO-LINE ARRAYS

By L. Carlitz

1. Introduction. The present paper is concerned with the problem of evaluating the sum

$$
\begin{equation*}
p(n, m ; a)=\sum a^{\sum_{n_{i}+} \sum_{m_{i}}} \tag{1.1}
\end{equation*}
$$

where the outer summation is extended over all two-line arrays

$$
\left\{\begin{array}{llll}
n_{1} & n_{2} & n_{3} & \cdots \tag{1.2}\\
m_{1} & m_{2} & m_{3} & \cdots
\end{array}\right.
$$

subject to the conditions $n_{1}=n, m_{1}=m$,

$$
\begin{equation*}
n_{i}>m_{i}, \quad n_{i}>n_{i+1}, \quad m_{i}>m_{i+1}, \quad n_{i} \geq 0, \quad m_{i} \geq 0 . \tag{1.3}
\end{equation*}
$$

This question was suggested by the following problem.
Let $G F(q)$ denote the finite field of order q and let $G F[q, x]$ denote the domain of polynomials in x with coefficients in $G F(q)$. If $A, B \varepsilon G F[q, x]$ we seek the number of partitions

$$
\begin{equation*}
A=\sum U_{i}, \quad B=\sum V_{i} \tag{1.4}
\end{equation*}
$$

where U_{i}, V_{i} are normalized polynomials in $G F[q, x]$ such that

$$
\operatorname{deg} U_{i}=n_{i}, \quad \operatorname{deg} V_{i}=m_{i}, \quad \operatorname{deg} A=n, \quad \operatorname{deg} B=m
$$

and the n_{i}, m_{i} satisfy (1.3). If $P(A, B)$ denotes this number, it is easily seen that.

$$
\begin{equation*}
P(A, B)=q^{-n-m} p(n, m ; q) . \tag{1.5}
\end{equation*}
$$

We remark that the corresponding problem for simple partitions [1]

$$
\begin{equation*}
A=\sum U_{i} \tag{1.6}
\end{equation*}
$$

where

$$
\operatorname{deg} U_{i}=n_{i}, \quad \operatorname{deg} A=n=n_{1}, \quad n_{i}>n_{i+1}
$$

is not difficult; the number of partitions in question is given by

$$
\begin{equation*}
\prod_{r=0}^{n-1}\left(1+q^{r}\right) . \tag{1.7}
\end{equation*}
$$

Returning to $p(n, m ; a)$ we remark that the case $a=1$ has been treated in [2]. Put

$$
\begin{equation*}
p(n, m)=p(n, m ; 1) \tag{1.8}
\end{equation*}
$$

Received June 29, 1964. Supported in part by NSF grant GP-1593.

