THE EXISTENCE OF EXPANSIVE HOMEOMORPHISMS ON MANIFOLDS

By William Reddy

1. Introduction. In this paper X will denote a metric space whose metric is d. A homeomorphism, f, of X onto itself is called expansive if there exists a positive number c such that for each pair (x, y) of distinct points of X, there exists an integer n for which $d\left[f^{n}(x), f^{n}(y)\right]>c$. The number c is called an expansive constant for f. Several examples of expansive homeomorphisms are known, and in one of them, due to R. F. Williams [4], the space X is a continuum. W. H. Gottschalk [2; 348] and others have asked whether locally connected spaces or manifolds admit such homeomorphisms. In §3 we construct an expansive homeomorphism of the open cell of even positive dimension, and in $\S 4$, one of the r-dimensional torus, if $r \geq 2$. In $\S 2$ we prove a theorem which implies all of the known non-existence theorems. In this connection, the reader should see Bryant [1] and Jakobsen and Utz [3].
2. Non-existence theorems. If f is a homeomorphism of X onto itself, and x is a point of X, the α-limit set of x, denoted by $\alpha(x)$, consists of those points y of X such that $y=\lim _{j \rightarrow \infty} f^{n_{i}}(x)$ for some strictly decreasing sequence of integers n_{i}. The ω-limit set of x, denoted by $\omega(x)$, is similarly defined for strictly increasing sequences n_{i}. If, for some point $x, \alpha(x)$ and $\omega(x)$ each consist of a single point, we say x has converging semi-orbits under f.

Theorem 1. If X is compact and f is an expansive homeomorphism, the set of points having converging semi-orbits under f is a countable set.

Proof. Let c be an expansive constant for f, and say that x is close to y if $d(x, y)<c / 2$. Since f is expansive, it has at most finitely many fixed points $[1 ; 388]$ say q_{1}, \cdots, q_{k}. Let A denote the set of points having converging semiorbits, and suppose A is uncountable. If $x \in A$, both $\alpha(x)$ and $\omega(x)$ are fixed points. Let $A(i, j)$ be the set of points for which $\alpha(x)=q_{i}$ and $\omega(x)=q_{i}$. Then A is the union of the finitely many sets $A(i, j)$, so that one of these (call it B) is uncountable. For each positive integer N, let $B(N)$ be the collection of points x such that, for $n \geq N, f^{n}(x)$ is close to $\omega(x)$ and $f^{-n}(x)$ is close to $\alpha(x)$. Since B is the union of the sets $B(N)$, one of them, say $B(M)$, must be infinite. Since X is compact, there exist distinct points y and z of $B(M)$ with $d(y, z)$ so small that $f^{n}(z)$ is close to $f^{n}(y)$ if $|n| \leq M$. From this remark and the definition of $B(M)$, we conclude that $d\left[f^{n}(y), f^{n}(z)\right]<c$ for all integers n, contrary to the choice of c. Therefore, A is countable.

Corollary 1. There exists no expansive homeomorphism of an arc.
Received June 8, 1964.

