SECOND ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL BOUNDARY CONDITIONS

By Allan M. Krall

1. Introduction. In the light of the recent work by Sims [5] on singular differential operators of second order and the desire for more general boundary conditions, it seems natural to consider integral boundary conditions. This paper exhibits an operator generated by such a condition, examines its spectrum, resolvent and adjoint. The adjoint operator is of special interest since it is not a purely differential operator. We will use the notation of Sims [5] and Krall [1].

We first require some preliminary results. Let us consider a differential expression of the form $l y=-y^{\prime \prime}+q(x) y$ over an interval $[r, b)$ where r is an ordinary point of l and b is a singular point of l. Let $q(x)=q_{1}(x)+i q_{2}(x)$ be continuous on $[r, b)$ with $q_{2}(x) \leq 0$. Let $\lambda=\mu+i \nu$. In a great portion of what follows ν will be restricted to positive values. Finally let $\theta(x, \lambda)$ and $\phi(x, \lambda)$ be solutions of $(l-\lambda) y=0$ satisfying $\theta(r, \lambda)=1, \theta^{\prime}(r, \lambda)=0$, $\phi(r, \lambda)=0, \phi^{\prime}(r, \lambda)=-1$.

Theorem 1.1. For all $\nu>0$ there is a complex function $M(\lambda)$ such that $\psi(x, \lambda)=$ $\theta(x, \lambda)+M(\lambda) \phi(x, \lambda)$ satisfies $(l-\lambda) y=0$ and is in $L^{2}\left(r, b ;\left[1-q_{2}(x)\right] d x\right)$ and hence in $L^{2}(r, b)$.

It is further true that
I. $M(\lambda)$ is unique; $\psi(x, \lambda)$ is the only solution of $(l-\lambda) y=0$ in $L^{2}\left(r, b ;\left[1-q_{2}(x)\right] d x\right)$ and $\psi(x, \lambda)$ is the only solution of $(l-\lambda) y=0$ in $L^{2}(r, b)$, or
II. $M(\lambda)$ is unique; $\psi(x, \lambda)$ is the only solution of $(l-\lambda) y=0$ in $L^{2}\left(r, b ;\left[1-q_{2}(x)\right] d x\right)$, but every solution of $(l-\lambda) y=0$ is in $L^{2}(r, b)$, or
III. All solutions of $(l-\lambda) y=0$ are in $L^{2}\left(r, b ;\left[1-q_{2}(x)\right] d x\right)$ and in $L^{2}(r, b)$.

In Cases I and II, $M(\lambda)$ is the limit of circles arising from a boundary condition imposed at b^{\prime} approaching b in $[r, b)$. In Case III the circles approach a limit circle and any $M(\lambda)$ on this circle gives rise to square summable solutions. Hence all are. As a reference to this we site Sims [5] or Krall [1]. We now consider a differential operator in this setting defined by a general boundary condition.
2. The operator L. Let D_{0} be the set of all functions f defined on $[r, b)$ satisfying
i. f is in $L^{2}(r, b)$.

Received June 29, 1964.

