INTEGRAL FUNCTIONS AND TAUBERIAN THEOREMS

By J. M. Anderson

1. Let F(z) be an integral function of genus zero all of whose zeros are real and negative. In what follows we shall assume that F(0) = 1. This seeming restriction will involve no loss of generality as we are interested in certain properties of F(z) as r = |z| approaches infinity. Let

n(r) = n(r, F) = number of zeros of F(z) in $|z| \leq r$.

Under these hypotheses we have

$$\log F(r) = \int_0^\infty \log\left(1 + \frac{r}{t}\right) dn (t),$$

i.e.

(1.1)
$$\log F(r) = r \int_0^\infty \frac{n(t) dt}{t(t+r)}.$$

Also, by analytic continuation,

(1.2)
$$\log F(z) = z \int_0^\infty \frac{n(t) dt}{t(t+z)}$$

for $|\arg z| < \pi$.

We may write (1.2) as

(1.3)
$$\log |F(re^{i\theta})| = r \int_0^\infty \frac{n(t)(t\cos\theta + r) dt}{t(r^2 + t^2 + 2rt\cos\theta)},$$

(1.4)
$$\arg F(re^{i\theta}) = r \sin \theta \int_0^\infty \frac{n(t) dt}{r^2 + t^2 + 2rt \cos \theta}$$

for $|\theta| < \pi$.

Titchmarsh has pointed out, [12], that theorems relating the growth of n(r) to log F(r) are closely related to certain Tauberian theorems of Hardy and Littlewood. We have

THEOREM A. [6]. Suppose that $f(t) \ge 0$. Suppose also that $f(t) \in \mathcal{L}(0, T)$ for every finite T and, that if $\rho > 0$,

$$\frac{f(t)}{(r+t)^{\rho}} \varepsilon \, \mathfrak{L}(0, \, \infty)$$

for some (and so for all) r > 0. If, further

Received April 6, 1964 in revised form July 12, 1965. This work was done while the author was receiving support from the National Science Foundation (Contract NSF-G-18913).