THE DERIVATIVE AND THE INTEGRAL OF BANACH-VALUED FUNCTIONS

By Morteza Anvari

In this paper the author considers the differentiability and the integrability (in the sense of Bochner) of an additive set-function of bounded variation. The domain of the set-function is a regular family of measurable sets. No topology is assumed on the measure space. It turns out that if the range of the set-function is a weakly compact Banach space, then the function is weakly differentiable, strongly measurable and Bochner-integrable.

Let (X, Σ, μ) denote a measure space. We shall say that a class $\mathcal{C} \subset \Sigma$ of measurable subsets of X indefinitely covers a subset $Y \subset X$ if for each $y \varepsilon Y$, there exists a sequence $A_{n} \varepsilon \mathbb{C}$ such that $y \varepsilon A_{n}, n \varepsilon \omega$ and $\mu\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. The exterior measure μ_{e} of a set $A \subset X$ is defined to be $\mu_{e}(A)=\inf \mu\left(A^{\prime}\right)$ over all measurable A^{\prime} which contain A.

A family \mathcal{G} is called μ-regular if
(i) $\mu_{e}\left(\cup_{A \varepsilon g} A\right)<\infty$;
(ii) the set $\rho(A)$ of points outside A and indefinitely covered by subsets A^{\prime} joint to A has measure zero;
(iii) there exist two numbers a and $b(b>a>1)$ such that for every $A \varepsilon \mathcal{G}$, $\mu_{e}(\Omega(A))<b \mu(A)$ where

$$
\Omega(A)=\left\{\cup A^{\prime}: A^{\prime} \varepsilon \mathcal{G}, A^{\prime} \cap A \neq \phi, \mu\left(A^{\prime}\right)<a \mu(A)\right\} .
$$

Theorem 1 (Vitali-Denjoy). Let $\Delta(\mathcal{G})$ [abbreviated $\Delta]$ denote the set of points indefinitely covered by the regular family \mathcal{G}. Then
(i) there exists a sequence $\left\{A_{n}\right\}$ of disjoint sets in \mathcal{G} such that

$$
\mu\left(\Delta-\Delta \cap \bigcup_{n \varepsilon \omega} A_{n}\right)=0 ;
$$

(ii) for every $\epsilon>0$ a sequence $\left\{A_{n}\right\}$ of disjoint sets in \mathcal{G} can be chosen such that $\mu\left(\bigcup_{n \varepsilon \omega} A_{n}\right)<\mu(\Delta)+\epsilon$.

The proof of this theorem can be found in [3].
Definitions A. Let $\mathcal{G}=\{A\}$ be a regular family of sets and let $\left\{\epsilon_{k}\right\}$ be a decreasing sequence of positive real numbers converging to zero. Let \mathcal{G}^{k} denote the family of sets A in \mathcal{G} for which $\mu(A)<\epsilon_{k}$. Since \mathcal{G}^{k} indefinitely covers Δ, by Theorem 1 there exists a denumerable subfamily $\left\{A_{i}^{k}\right\}$ of $乌^{k}$ which covers Δ a.e., i.e. $\mu\left(\Delta-\Delta \cap \bigcup_{i \varepsilon \omega} A_{i}^{k}\right)=0$. Let $R^{k}=\Delta-\Delta \cap \bigcup_{i \varepsilon \omega} A_{i}^{k}$ and $R=$ $\bigcup_{k \Sigma \omega} R^{k} . \mu(R)=0$ since $\mu\left(R^{k}\right)=0$. Now let $\Delta^{\prime}=\Delta-R, \eta_{i}^{i}=A_{i}^{i} \cap \Delta^{\prime}$

Received July 17, 1964. This work constitutes a portion of the author's doctoral dissertation which was completed in 1962 under the guidance of Professor M. W. J. Trjitzinsky at the University of Illinois.

