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1. Introduction. In 19i0, R. S. Phillips (see the bibliography) showed that
there was no bounded projection of (m) onto (c), while in 1944 A. Sobczyk
showed that if S was a separable (closed) subspace of (m), including (c), then
there did exist a bounded projection of S on (c). These results, and also those
of B. Griinbaum are compatible with, and did suggest to P. C. Curtis Jr. and
the author, the specious

CONJECTURE. If e(X) i8 isometric with a closed subspace C of a separable
Banach space S, then there is a bounded projection of S on C.

This conjecture shall now be destroyed. In fact, there is (see 3.5 below)
a countable closed bounded subset X of the line such that S e(X, R), which
is obviously separable, contains a closed subspace isometric to e(Y, R), but
there is no bounded projection of the former on the latter.

In this example, the space Y is an identification space of X, arising from a
decomposition D of X. The projection problem is just the problem of projecting
e(X, R) onto the D-functions, that is to say, the functions constant on the
sets of D. We relate this to a new concept, the derived decomposition D’.
Our analysis shows that Sobczyk’s projection exists, not only because of the
separability, but because D (") 0 for some n. We show that (2.7 below)
when D (") 0, then there exists a projection of bound at most 3", which can
be improved to 4n 1 when X is compact.
When the decomposition D has exactly one set Z which is plural (i.e., has

more than one point) and if Z contains exactly n limit points of the complement,
then there is a projection of bound 3 2In (see 2.4) and no projection of lesser
bound (see 3.1).

For all these results we suppose that X and X/D are metric, but not always
compact.

2. The construction of bounded projections. When X and Y are topological
spaces, then 2(X, Y) denotes the class of continuous functions ] X -- Y.
In the present section, we shall let a(X) stand for (X, L) where L is some
normed linear space over the reals R. For example L might be R or the com-
plex field C. The L will be fixed for the entire discussion.

In any case, (X) may be "normed",
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