GENERATING FUNCTIONS FOR POWERS OF A CERTAIN GENERALISED SEQUENCE OF NUMBERS

By A. F. Horadam

1. Introduction. Two fundamental sequences in the theory of second-order recurrences are the Fibonacci sequence $\left\{f_{n}\right\}$ and the Lucas sequence $\left\{a_{n}\right\}$ defined by:

n	$: 0$	1	2	3	4	5	6	\cdots
$\left\{f_{n}\right\}: 1$	1	2	3	5	8	13	\cdots	
$\left\{a_{n}\right\}: 2$	1	3	4	7	11	18	\cdots	

where

$$
\begin{equation*}
f_{n}=f_{n-1}+f_{n-2}=\frac{\alpha_{1}^{n+1}-\beta_{1}^{n+1}}{\alpha_{1}-\beta_{1}} \quad(n \geq 2) \tag{3}
\end{equation*}
$$

(4)

$$
a_{n}=a_{n-1}+a_{n-2}=\alpha_{1}^{n}+\beta_{1}^{n}
$$

in which α_{1}, β_{1} are the roots of $x^{2}-x-1=0$, so that

$$
\begin{equation*}
\alpha_{1}=\frac{1+\sqrt{5}}{2}, \beta_{1}=\frac{1-\sqrt{5}}{2}, \alpha_{1}+\beta_{1}=1, \alpha_{1} \beta_{1}=-1, \alpha_{1}-\beta_{1}=\sqrt{5} \tag{5}
\end{equation*}
$$

Classical extensions of these are the sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$ defined by:
(6) $\left\{u_{n}\right\} \equiv\left\{u_{n}(p, q)\right\}: u_{0}=1, u_{1}=p, u_{n}=p u_{n-1}-q u_{n-2} \quad(n \geq 2)$
(7) $\quad\left\{v_{n}\right\} \equiv\left\{v_{n}(p, q)\right\}: v_{0}=2, v_{1}=p, v_{n}=p v_{n-1}-q v_{n-2}$
with $p^{2} \neq 4 q$ and p, q arbitrary integers. (Comments on the degenerate case $p^{2}=4 q$ are made towards the end of $\S 4$.)

Another extension is defined in [4], with some obvious notational alterations, and for arbitrary integers r, s, by:

$$
\begin{equation*}
\left\{h_{n}\right\} \equiv\left\{h_{n}(r, s)\right\}: h_{0}=r, h_{1}=r+s, h_{n}=h_{n-1}+h_{n-2}=r f_{n}+s f_{n-1}(n \geq 2) \tag{8}
\end{equation*}
$$

Sequences (6) and (7) have long exercised interest; see for instance, BesselHagen [1], Lucas [8] and Tagiuri [10], and, for historical details, Dickson [3]. Important particular cases of them are [8],
the Fermat sequences

$$
\left\{\begin{array}{l}
\left.\left\{u_{n}(3,2)\right\} \equiv\left\{2^{n+1}-1\right\}: 1 \begin{array}{llllll}
1 & 7 & 15 & 31 & \cdots \\
\left\{v_{n}(3,2)\right\} \equiv\left\{2^{n}+1\right\} & : 2 & 3 & 5 & 9 & 17
\end{array}\right]
\end{array}\right.
$$

Received April 7, 1964.

