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1. Kronecker products. The purpose of the present paper is to provide
some of the details of the results announced in [5]. We refer the reader to
that paper on matters concerning motivation and background, as well as for
some of the notations and definitions. We begin our discussion with the follow-
ing lemma, which will be used in many places below, but which we state with-
out proof.

LEMMA 1.1. Let E and F be Banach spaces and T E’ F a bounded linear
trans]ormation which is continuous with respect to the weatc* topology o] E’ and
the wea topology o] F. Suppose that M and M are respective subsets o] E’ and F’,
each o] which is total with respect to the weak* topology. Finally, let us assume that
]or every x’ M and y’ M,

(1.1) <Tx’, y’} 0.

Then T O.
Gelbaum [1] (see also Tomiyama [10]) introduced a multiplication on the

tensor product A () B of any two algebras A and B over the same field, turning
A ( B into an algebra over that field. The resulting multiplication is the
bilinear extension to the entire A @ B of the product

(1.2) (U, ( V1)(U: ( V2) UIU. ( VlV

of generators of A () B, where U1, U A and V1, V B. The tensor product
A () B will always be considered in this paper as an algebra under the product
defined by (1.2). Let now ((E) denote the Banach algebra of all bounded
linear operators on a Banach space E. Let U 5(E) and V ((F), where F
is also a Banach space. Consider a tensor t of the algebraic tensor product E( F
with a representation

(1.3) t-- x,y,.
i-I

We define U () V(i) by the relation

(1.4) U V(i) Ux, (0 Vy,.
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