NOTES ON A COMBINATORIAL THEOREM OF BOHNENBLUST

BY ROGER H. FARRELL

0. Summary. Stated below is a combinatorial result communicated by Bohnenblust to Spitzer a number of years ago. Since that time no proof has appeared. In view of considerable interest at present, it is the purpose of these notes to make available a proof of Bohnenblust's Theorem.

1. Introduction. Throughout, $\Omega = \{1, 2, \dots, n\}$. A set function $\epsilon(\cdot)$ is a real valued function defined on the subsets of Ω such that if S and T are disjoint subsets of Ω , then

$$\epsilon(S) = \epsilon(S \cup T) \text{ or } \epsilon(T) = \epsilon(S \cup T).$$

We mention two examples. Suppose x_1, \dots, x_n are *n* real numbers. Let $\theta(\cdot)$ be defined by $\theta(x) = 1$ if x > 0 and $\theta(x) = 0$ if $x \le 0$. For any subset $S = [\delta_1, \dots, \delta_i]$ define $\epsilon(S) = \theta(x_{\delta_1} + \dots + x_{\delta_i})$. The function $\epsilon(\cdot)$ defined in this way is a set function. To obtain a different example, for any subset $S = [\delta_1, \dots, \delta_i]$ define $\eta(S) = \max_{1 \le i \le j} x_{\delta_i}$. Then $\eta(\cdot)$ is a set function. Easily verified are : a set function on Ω can have at most *n* values; if $S \subset \Omega$,

then there is a $j \in \Omega$ such that $\epsilon(\{j\}) = \epsilon(S)$.

The sequel will discuss sequences δ_1 , δ_2 , \cdots , δ_i , permutations

$$oldsymbol{\delta} = egin{pmatrix} 1\,, & 2\,, & \cdots\,, \,n \ \delta_1 & \delta_2 \ , \ \cdots\,, \ \delta_n \end{pmatrix}$$
 ,

and permutations (ρ_1, \dots, ρ_i) which are cycles. Since a sequence ρ_1, \dots, ρ_i uniquely determines the cycle (ρ_1, \dots, ρ_i) (but not conversely). the notation $[\rho_1, \dots, \rho_i]$ can be read "the set whose elements are the numbers in the sequence ρ_1, \dots, ρ_i " or "the set whose elements are the numbers in the cycle (ρ_1, \dots, ρ_i) ." Throughout we will write $\epsilon[\rho_1, \dots, \rho_i]$ instead of $\epsilon([\rho_1, \dots, \rho_i])$.

Given a permutation δ and an integer k between one and n there is determined a unique cycle in the cyclic decomposition of δ which contains k. We write $c(\delta, k)$ for this cycle. In the sequel we write G for the collection of n! permutations of the set $\Omega = \{1, 2, \dots, n\}$. We define functions f and g on the Cartesian product $G \times \Omega$ as follows. Let $\delta \varepsilon G$ and

$$\delta = egin{pmatrix} 1, \ \cdots, \ n \ \delta_1 \ , \ \cdots, \ \delta_n \end{pmatrix}.$$

Then,

$$f(\delta, k) = \epsilon[\delta_1, \cdots, k];$$

Received March 9, 1964.