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1. Introduction. Let C be a simple closed curve in the complex z-plane,
let ] be a continuous function from C to the complex numbers, let S {Zo
zl z,} denote for each positive integer n a set of n W 1 distinct points
on C, and finally let L,(]; z) be the polynomial of degree at most n found by
interpolation to ] at the points S The classical Lagrange formula for L. is

(1.1) (z)L,(] z) ](z,,) (z z,)o/ (z,)’

where oo(z) (z- Z,o)(Z- z,) (z- z,,). The expression oo(z)/(z- z,)
becomes formally indeterminate when z z. Here, and wherever in the
sequel artificial singularities are present, it will be assumed that definitions are
completed by continuity.

It is known [4] [6] that if the sequence $1 $2, is suitably chosen and C
is suitably smooth, then for all such functions ],

1 f_ ](t) dt ]o(Z)(1.2) Lira L.(]; z)
z

for z on the interior region D of C. The successful choice of S is essentially
the following one" Let

(1.3) z= ,(w) d(w +..., d>0,
\

be univalent and analytic on the set {w: 1 < [w < and continuous on
w: 1

_
Iwl < }; let it map {w: Iwl > 1} conformally onto the complement

of D J C so that - and let S,= {(exp (2i/(n+1)), =0, 1, 2, n}.
This point set S. will be called the n -[- 1)-th set of Fejdr points on C, in
recognition of certain important results obtained by L. Fej5r using these points
of interpolation. (See especially [9].) In the classical case in which f is analytic
on C J D, the set S need only be the image of an equidistributed set on Iw] 1
rather than of an equispaced set [9], but the author recently showed [5] that if ]
is merely continuous on C ) D, nalytic on D, then equispacing on lwl 1
is essential for (1.2).
We shall deal in this paper exclusively with interpolation in Fejdr points.
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