EXISTENCE OF SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER IN L^{2}.

By Allan M. Krall

In 1957 Sims [2] extended the limit point-limit circle argument (of Weyl [4], Titchmarsh [3], and Coddington and Levinson [1]) which shows that under certain conditions the equation

$$
\begin{equation*}
-\psi^{\prime \prime}+(q(x)-\lambda) \psi=0 \tag{1}
\end{equation*}
$$

has a square summable solution, to a non-self adjoint problem. The purpose of this paper is to show that the limit point-limit circle argument yields a natural proof that the nonhomogeneous equation

$$
\begin{equation*}
-u^{\prime \prime}+(q(x)-\lambda) u=K(x) \tag{2}
\end{equation*}
$$

also has square summable solutions provided $K(x)$ is square summable. A necessary and sufficient condition is derived.

Since the method of proof is closely related to the original limit point-limit circle arguments, the method of Sims [2] will first be sketched.

Let r be interior to (a, b); let $q(x)=q_{1}(x)+i q_{2}(x)$ be continuous on (a, b); let $\lambda=\mu+i \nu$ and $\alpha=\alpha_{1}+i \alpha_{2}$. Further assume that $q_{2}(x) \leq 0, \nu>0, \alpha_{2} \leq 0$. Let $\phi(x)$ and $\theta(x)$ be solutions of (1) satisfying $\phi(r)=\sin \alpha, \phi^{\prime}(r)=-\cos \alpha$, $\theta(r)=\cos \alpha, \theta^{\prime}(r)=\sin \alpha$. Note that for all $x, W[\phi(x), \theta(x)]=\phi(x) \theta^{\prime}(x)-$ $\phi^{\prime}(x) \theta(x) \equiv 1$.

Throughout the remainder of this paper λ will be fixed with $\nu=\operatorname{Im}(\lambda)>0$.
We will be concerned with two types of Hilbert spaces: (i) $L^{2}(d x)$ or (ii) $L^{2}\left(\left[1-q_{2}(x)\right] d x\right)$. Note that if a function is in any of the spaces (ii), it is also in the corresponding space (i). Further note that since $\nu>0, q_{2}(x) \leq 0$, $\int\left[\nu-q_{2}(x)\right]|f|^{2} d x<\infty$ if and only if $\int\left[1-q_{2}(x)\right]|f|^{2} d x<\infty$.

Theorem 1 (Sims). For all $\nu>0$, there is a complex function $M(=M(\lambda))$ such that $\psi_{1}(x)=\theta(x)+M \phi(x)$ satisfies (1) and is in $L^{2}\left(r, b ;\left[1-q_{2}(x)\right] d x\right)$ and hence is in $L^{2}(r, b)$.

Let z be an arbitrary complex number, and let $\psi(x, l, z)=\theta(x)+l\left(z, b^{\prime}\right) \phi(x)$ be a solution of (1) satisfying

$$
\begin{equation*}
z \psi\left(b^{\prime}, l, z\right)+\psi^{\prime}\left(b^{\prime}, l, z\right)=0 \tag{3}
\end{equation*}
$$

for b^{\prime} in (r, b). Then $l\left(z, b^{\prime}\right)$ is determined for all complex boundary conditions (3) by

$$
l\left(z, b^{\prime}\right)=-\left(\theta\left(b^{\prime}\right) z+\theta^{\prime}\left(b^{\prime}\right)\right) /\left(\phi\left(b^{\prime}\right) z+\phi^{\prime}\left(b^{\prime}\right)\right)
$$

Received October 18, 1963. This is a part of a Ph.D. dissertation written at the University of Virginia. The author wishes to thank Professors E. J. McShane and Marvin Rosenblum for their assistance.

