LOCALLY FLAT IMMERSIONS AND WHITNEY DUALITY

By Edward Fadell

1. Introduction. Let M denote a topological *n*-manifold and S a topological (n + k)-manifold. Then, if $f: M \to S$ is a locally flat *imbedding* and $(\mathfrak{I}, \mathfrak{I}_0)$ is the tangent fiber space of M, it was shown in [1] that it is possible to associate with this imbedding a normal fiber space $(\mathfrak{N}, \mathfrak{N}_0)$ such that $(\mathfrak{I}, \mathfrak{I}_0) \oplus (\mathfrak{N}, \mathfrak{N}_0)$, where \oplus is an appropriately defined Whitney sum, is fiber homotopy equivalent to the fibered pair over M induced by f and the tangent fiber space of S. $(\mathfrak{I}, \mathfrak{I}_0)$ and $(\mathfrak{N}, \mathfrak{N}_0)$ are in this case very nice fibered pairs, more precisely generalized *n*-plane and *k*-plane bundles [1]. Thus, if W(M) and W(S) are the total Stiefel-Whitney class of M and S, respectively, and \overline{W}_f is that unique class in $H^*(M; \mathbb{Z}_2)$ such that $W(M) \cup \overline{W}_f = f^*(W(S))$ ([7], [2]), then \overline{W}_f has a geometric interpretation as the total Stiefel-Whitney class of a generalized *k*-plane bundle, namely $(\mathfrak{N}, \mathfrak{N}_0)$. The use of $(\mathfrak{N}, \mathfrak{N}_0)$ allows one to employ many of the techniques used in the differential analogue and also provides geometric results [1].

Our objective here is to develop such a theory for locally flat immersions (= locally, locally flat imbeddings), where the situation is, unfortunately, more complicated. In this context, the concept of generalized *n*-plane bundle [1] must be weakened a little. In addition, in order to recognize the weak homotopy type of certain spaces, the c-o topology in certain path spaces must be weakened (i.e., made finer by enlarging the topology) also. (The latter can have certain advantages, e.g. if $f: X \to Y$ is a map, where Y has a topology weaker than one usually employed, then f is, in some sense, "nicer". We will see a specific application of this in (3.2.2.).) We will associate with every locally flat immersion $f: M \to S$ a normal fiber space (§3) which is a homology k-plane bundle $(\S2)$ and prove the Whitney Duality Theorem for such immersions (§5). In particular, it will follow that if $g: M \to S$ is any map and \overline{W}_{g} is defined by $W(M) \cup \overline{W}_{g} = g^{*}(W(S))$, then, if $g \sim f$, where f is a locally flat immersion, \overline{W}_{g} is realizable as the total Stiefel-Whitney class of a homology k-plane bundle, namely, the normal fiber space associated with f. Singular homology will be employed throughout.

2. Preliminaries.

DEFINITION (2.1). An *n*-manifold M is a connected separable metric space which is locally homeomorphic to R^n (Euclidean *n*-space).

DEFINITION (2.2). Let $f: M \to S$ denote a map, where M is an n-manifold

Received October 9, 1963. This work was supported, in part, by the National Science Foundation under Grant NSF G-23849 and the Wisconsin Alumni Research Foundation.