A BILINEAR MATRIX EQUATION OVER A FINITE FIELD

By John H. Hodges

1. Introduction. Let $G F(q)$ denote the finite field of $q=p^{n}$ elements. Let A be an $e \times f$ matrix and B be an $s \times t$ matrix of rank w over $G F(q)$. This paper is concerned with the problem of determining the number $N\left(A, B, k_{1}, k_{2}\right)$ of pairs U, V of matrices over $G F(q)$ such that

$$
\begin{equation*}
U A V=B \tag{1.1}
\end{equation*}
$$

where U is $s \times e$ of rank k_{1} and V is $f \times t$ of rank k_{2}. First (Theorem 1), a formula is proved which gives $N\left(A, B, k_{1}, k_{2}\right)$ as a sum involving the numbers $N\left(I_{m}, B_{0}, r_{1}, r_{2}\right)$, where $m=\operatorname{rank} A$ and I_{m} is the identity matrix of order m, B_{0} is a canonical form for B under equivalence of matrices and r_{1}, r_{2} run from w to $\min \left(m, k_{1}\right)$ and $\min \left(m, k_{2}\right)$, respectively. Then (Theorem 2) the number $N\left(I_{m}, B_{0}, r_{1}, r_{2}\right)$ is found in terms of certain exponential sums $H(s, t, w ; z)$ whose explicit values are known [1; §8]. Theorem 2 is proved by expressing the desired number as a double finite trigonometric sum which is then evaluated. Together with the formula for $H(s, t, w ; z)$, Theorems 1 and 2 serve to give $N\left(A, B, k_{1}, k_{2}\right)$ explicitly.

The total number $N_{t}^{s}(A, B)$ of solutions U, V of (1.1) of arbitrary rank has been determined previously by the writer [1; Theorem 3]. This number is clearly the sum of $N\left(A, B, k_{1}, k_{2}\right)$ over all k_{1} and k_{2} such that $w \leq k_{1} \leq \min (s, e)$ and $w \leq k_{2} \leq \min (f, t)$.
2. Notation and preliminaries. Throughout this paper Roman capitals A, B, \cdots will denote matrices over $G F(q), q=p^{n}$, except as indicated. $A(e, f)$ will denote a matrix of e rows and f columns and $A(e, f ; m)$ a matrix of the same size which has rank m. In particular, $I(e, f ; m)$ will denote the matrix of e rows and f columns which has I_{m}, the identity of order m, in its upper left-hand corner and zeros elsewhere. If $A=A(e ; f ; m)$, then there exist non-singular matrices $P(e, e)$ and $Q(f, f)$ such that $P A Q=I(e, f ; m)$.

If $A=\left(\alpha_{i j}\right)$ is square, then $\sigma(A)=\sum_{i} \alpha_{i i}$ is the trace of A. It is easily shown that $\sigma(A+B)=\sigma(A)+\sigma(B)$ and for $A C$ square, $\sigma(A C)=\sigma(C A)$.

For $\alpha \in G F(q)$, we define

$$
\begin{equation*}
e(\alpha)=e^{2 \pi i t(\alpha) / p}, \quad t(\alpha)=\alpha+\alpha^{p}+\cdots+\alpha^{p^{n-1}} \tag{2.1}
\end{equation*}
$$

from which it follows that $e(\alpha+\beta)=e(\alpha) e(\beta)$ and

$$
\sum_{\beta} e(\alpha \beta)= \begin{cases}q & (\alpha=0) \tag{2.2}\\ 0 & (\alpha \neq 0)\end{cases}
$$

Received September 16, 1963. The work on this paper has been supported by National Science Foundation Research Grant G19894.

