
NEW FOUNDATIONS AND THE AXIOM OF COUNTING

Introduction. We shall be concerned with the system NF, the New Founda-
tions of Quine [5]. Working with this system Rosser [6] noticed that a certain
obvious proposition of intuitive set theory did not appear to be provable in NF,
and considered adding it to the system as a new axiom, the so called axiom o]
counting"
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In this paper we show that the axiom of counting cannot be proved to be equiv-
alent to a stratified formula in 1NF unless it is disprovable; a ]ortiori the axiom
of counting can not be proved in NF, if NF is consistent. A number of related
results are established. One of these is the non-finite axiomatizability of a system
intimately connected with NF.
We make essential use of the connections between NF and type theory dis-

covered by Specker [8], [9]; this will be discussed in 1. We shall use without
explicit mention the fact that the "axiom of infinity", A Nn, is provable in
1NF, established in Specker [7]. We shall also use the result of Hailperin [2] that
NF can be finitely axiomatized.
For any system S which we introduce we always assume some fixed GSdel

numbering. In Peano Arithmetic (the system Z of [3]) we can then discuss the
syntax of S. In particular Cons is to be a natural assertion of consistency of S
in Peano Arithmetic. (It was pointed out in [1] that the "usual" construction of
the assertion of consistency of S in Peano Arithmetic involves some arbitrariness:
for if A (S) is the set of GSdel numbers of axioms of S one must construct a
formula a(x) numeralwise representing this set. If A (S) is a recursively enumera-
ble such a formula, a(x) will exist, but it will not be unique. When we refer to a
natural assertion o/ consistency we are demanding that a(x) must be an RE-
formula, in the terminology of [1]. This still does not determine a unique a,
and that is why we simply take Cons to be some natural assertion of con-
sistency.)

If S is a formal system and a recursive collection of sentences of S, S L)
is to be the system obtained by adding all members of as new axioms. We
write NFC for NF {axiom of counting}. We will establish that Con is
provable in NFC. (After finding this result we tried to "improve" it to show
ConF provable in NF. Once we thought we succeeded; our sincere thanks are
due to Professor Dana Scott for spotting the error.)
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