A STRUCTURE OF THE RAYLEIGH POLYNOMIAL

By Nand Kishore

The Rayleigh polynomial $\phi_{2 n}(\nu)$ has been defined [2], [3] in the following manner: Let $J_{\nu}(z)$ be the Bessel function of the first kind, and let $j_{\nu, m}, m=1,2, \cdots$, be the zeros of $z^{-\nu} J_{\nu}(z),\left|\operatorname{Re}\left(j_{\nu, m}\right)\right| \leq\left|\operatorname{Re}\left(j_{\nu, m+1}\right)\right|$, then

$$
\begin{equation*}
\phi_{2 n}(\nu)=4^{n} \prod_{k=1}^{n}(\nu+k)^{[n / k]} \sigma_{2 n}(\nu) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{2 n}(\nu)=\sum_{m=1}^{\infty}\left(j_{v, m}\right)^{-2 n}, \quad n=1,2, \cdots \tag{2}
\end{equation*}
$$

and $[x]$ is the greatest integer $\leq x$.
The symmetric function $\sigma_{2 n}(\nu)$ is called [1] the Rayleigh function of order $2 n$, and has been the subject of a number of investigations by Cayley, Watson, Forsyth and others [4;502]. It is obvious from (1) that any structure of $\sigma_{2 n}(\nu)$ is closely related with that of $\phi_{2 n}(\nu)$. However, no simple structure of the Rayleigh polynomial $\phi_{2 n}(\nu)$ is known so far. It has been shown [2] that $\phi_{2 n}(\nu)$ is a polynomial with positive integral coefficients, that its degree is $1-2 n+$ $\sum_{k=1}^{n}[n / k]$ and that all of its real roots lie in the interval $(-n,-2)$. Consequently, $\phi_{2 n}(\nu)$ may be written as

$$
\begin{equation*}
\phi_{2 n}(\nu)=\sum_{k=1}^{d} a_{n, k} \nu^{k}, \quad d=1-2 n+\sum_{s=1}^{n}\left[\frac{n}{s}\right] . \tag{3}
\end{equation*}
$$

The object of this paper is to give a structure of the polynomial $\phi_{2 n}(\nu)$.
Consider the positive integers s, k and n such that $s \leq n, k \leq n$. And let

$$
\begin{equation*}
\epsilon(s, k, n) \equiv\left[\frac{n}{s}\right]-\left[\frac{k}{s}\right]-\left[\frac{n-k}{s}\right] . \tag{4}
\end{equation*}
$$

It is seen that the value of $\epsilon(s, k, n)$ is either 0 or 1 . Let $R_{m}(n)$ be the smallest non-negative remainder when n is divided by m. That is,

$$
\begin{equation*}
n-R_{m}(n) \equiv 0 \quad(\bmod m), \quad 0 \leq R_{m}(n)<m \tag{5}
\end{equation*}
$$

(6) Lemma. $R_{s}(n)<R_{s}(k)$ if and only if $\epsilon(s, k, n)=1$.

Proof. Let $n=a s+R_{s}(n)$
$k=b s+R_{s}(k)$, where a, b are integers. Then
$\epsilon(s, k, n)=\left[\frac{n}{s}\right]-\left[\frac{k}{s}\right]-\left[\frac{n-k}{s}\right]$
Received April 25, 1963.

