A STRUCTURE OF THE RAYLEIGH POLYNOMIAL

By NAND KISHORE

The Rayleigh polynomial $\phi_{2n}(\nu)$ has been defined [2], [3] in the following manner: Let $J_{\nu}(z)$ be the Bessel function of the first kind, and let $j_{\nu,m}$, $m=1, 2, \cdots$, be the zeros of $z^{-\nu}J_{\nu}(z)$, $|\text{Re } (j_{\nu,m})| \leq |\text{Re } (j_{\nu,m+1})|$, then

(1)
$$\phi_{2n}(\nu) = 4^n \prod_{k=1}^n (\nu + k)^{\lfloor n/k \rfloor} \sigma_{2n}(\nu),$$

where

(2)
$$\sigma_{2n}(\nu) = \sum_{m=1}^{\infty} (j_{\nu,m})^{-2n}, \quad n = 1, 2, \cdots,$$

and [x] is the greatest integer $\leq x$.

The symmetric function $\sigma_{2n}(\nu)$ is called [1] the Rayleigh function of order 2n, and has been the subject of a number of investigations by Cayley, Watson, Forsyth and others [4; 502]. It is obvious from (1) that any structure of $\sigma_{2n}(\nu)$ is closely related with that of $\phi_{2n}(\nu)$. However, no simple structure of the Rayleigh polynomial $\phi_{2n}(\nu)$ is known so far. It has been shown [2] that $\phi_{2n}(\nu)$ is a polynomial with positive integral coefficients, that its degree is $1 - 2n + \sum_{k=1}^{n} [n/k]$ and that all of its real roots lie in the interval (-n, -2). Consequently, $\phi_{2n}(\nu)$ may be written as

(3)
$$\phi_{2n}(\nu) = \sum_{k=1}^{d} a_{n,k}\nu^{k}, \quad d = 1 - 2n + \sum_{s=1}^{n} \left[\frac{n}{s}\right].$$

The object of this paper is to give a structure of the polynomial $\phi_{2n}(\nu)$. Consider the positive integers s, k and n such that $s \leq n, k \leq n$. And let

(4)
$$\epsilon(s, k, n) \equiv \left[\frac{n}{s}\right] - \left[\frac{k}{s}\right] - \left[\frac{n-k}{s}\right].$$

It is seen that the value of $\epsilon(s, k, n)$ is either 0 or 1. Let $R_m(n)$ be the smallest non-negative remainder when n is divided by m. That is,

(5)
$$n - R_m(n) \equiv 0 \pmod{m}, \qquad 0 \leq R_m(n) < m.$$

(6) LEMMA. $R_s(n) < R_s(k)$ if and only if $\epsilon(s, k, n) = 1$.

Proof. Let $n = as + R_s(n)$ $k = bs + R_s(k)$, where a, b are integers. Then

$$\epsilon(s, k, n) = \left[\frac{n}{s}\right] - \left[\frac{k}{s}\right] - \left[\frac{n-k}{s}\right]$$

Received April 25, 1963.