## TAMING COMPLEXES IN HYPERPLANES

## BY R. H. BING AND J. M. KISTER

1. Introduction. In this paper we investigate conditions that suffice for an imbedding of a complex in a Euclidean space to be tame (cf. §§2, 7 for definitions). We also consider the more general question of when two imbeddings are equivalent. We show, for example, with a dimension restriction that if the image under an imbedding of a k-complex is contained in a hyperplane of codimension k, then the imbedding is tame. More precisely we prove:

THEOREM 1.1. Let K be a finite k-dimensional complex and h an imbedding of K into an n-plane  $E^n$  in  $E^{n+k}$ , where  $k + 2 \leq n$ . Let  $\epsilon$  be any positive number. Then there exists an isotopy  $g_i(t \in I)$  of  $E^{n+k}$  onto itself such that

- 1)  $g_0$  is the identity,
- 2)  $g_1h$  is piecewise linear,
- 3)  $g_t$  is the identity outside an  $\epsilon$ -neighborhood of h(K) for each t in I,
- 4) each point of  $E^{n+k}$  moves along a polygonal path under  $g_i(t \in I)$  having length less than  $\epsilon$ .

The case k = 1 of this theorem was substantially proved in [1].

In Corollary 5.6 we establish the corresponding result showing any two such imbeddings into hyperplanes are equivalent (and under an economical isotopy). In doing this we give a new proof (Theorem 5.5) of a result of Gugenheim [5] which leads to a sharpened form of his Theorem 5.

The first result of the type we prove in Corollary 5.6 is due to Klee [9] who showed that if a compact set K can be imbedded in  $E^{l}$ , then any two imbeddings of K into hyperplanes of codimension l are equivalent. In Theorem 6.2 we improve Klee's result for certain sets, not necessarily complexes, which leads to stronger results in one sense (we can drop the requirement that  $k + 2 \leq n$ ) than Corollary 5.6 for 2-manifolds (Corollary 6.3) and k-spheres with handles (Corollary 6.4). In [10] Stallings establishes the equivalence of locally flat imbeddings of k-spheres in  $E^{n}$ ,  $n \geq k + 3$ , which, when combined with Klee's result, would provide an alternate proof of Corollary 6.4 in the special case of a k-sphere.

Homma [6] and Gluck [3] have shown that the tameness of an imbedding in a combinatorial manifold is guaranteed if the imbedding is well-behaved in a neighborhood of the image. Gluck, for example, has shown that a locally tame imbedding is tame in the dimension range we are considering. (The authors have just recently learned that C. A. Greathouse [4] has also obtained

Received May 20, 1963. The first author was supported by grants NSF-G21514 and NSF-G11665; the second by grant NSF G24156 and a grant from the Institute for Advanced Study.