SUMS OF PROJECTIONS

By Joseph G. Stampfli

Following the notation employed by N. Dunford and co-workers in their study of spectral-type operators, we define a projection on a Hilbert space H, to be a bounded idempotent transformation of H into itself, (not necessarily self-adjoint). In a finite dimensional space when projections sum to a projection, they are pairwise disjoint; and the sum of projections is never a non-zero negative operator.
These last remarks can be interpreted as saying that projections globally try to be "positive", on a finite dimensional space. In this paper we will exhibit the surprising change which takes place when the underlying Hilbert space is infinite dimensional. Our main result states that any self-adjoint operator is the sum of four projections. We will first quote some well-known results to give perspective to that which follows.

Theorem A. If E_{1}, \cdots, E_{n} are projections on a finite dimensional Hilbert space \bar{H} and $E_{1}+\cdots+E_{n}=I$, then $E_{i} E_{j}=0 i, j=1, \cdots, n i \neq j$, i.e. the E_{1} 's are pairwise disjoint.

The use of the trace affords a quick and easy proof which obviously will not generalize to the infinite dimensional case. Note that if we have $E_{1}+\cdots+E_{n}=$ E_{n+1} where E_{1}, \cdots, E_{n+1} are projections, we can reduce this to the case where $E_{1}+\cdots+E_{k}=I$ by adding the projection $I-E_{n+1}$ to both sides of the initial equation. From here on H will denote a separable Hilbert space, which is infinite dimensional.

Theorem B. If E_{1}, \cdots, E_{n} are self-adjoint projections on H, with $E_{1}+\cdots+E_{n}$ $=I$; then the E_{i} are pairwise disjoint.
Proof. Let $x_{1} \varepsilon$ Range E_{1}, that is $E_{1} x_{1}=x_{1}$; then $\left(E_{1}+\cdots+E_{n}\right) x_{1}=I x_{1}$ implies $\left(E_{2}+\cdots+E_{n}\right) x_{1}=0$. Thus $0=\left(E_{2}+\cdots+E_{n} x_{1}, x_{1}\right)=\sum_{i=2}^{n}\left\|E_{i} x_{1}\right\|^{2}$; hence, $E_{i} x_{1}=0$ for $i=2, \cdots, n$. By considerations of symmetry it is now easy to see that the E_{i} 's are indeed pairwise disjoint.

Theorem C. If E_{1}, \cdots, E_{n} are projections on H, where $E_{1}+\cdots+E_{n}=I$ and $E_{i} E_{i}=E_{i} E_{i}$ for $i, j=1, \cdots, n$; then the E_{i} 's are pairwise disjoint.

Proof. By a well-known result (2) there exists a positive invertible operator Q such that $Q E_{i} Q^{-1}$ is a self-adjoint projection for $i=1, \cdots, n$. This reduces the proof to that of Theorem B.

We now proceed to the main part of the paper and first examine what happens when a small number of projections sum to a multiple of the identity.

Received March 20, 1963.

