A FUNCTIONAL-DIFFERENCE EQUATION

By L. CARLITZ

1. J. A. Morrison [1] has considered the functional-difference equation

(1.1)
$$(x - \alpha)(\alpha - \beta)^{n-1}g_n(x) = \alpha(x - \beta)^n g_{n-1}(\alpha) - x(\alpha - \beta)^n g_{n-1}(x)(n \ge 1),$$

where $g_0(x) = 1$. It follows from (1.1) that, for $n \ge 1$, $g_n(x)$ is a polynomial of degree $n - 1$ in x with coefficients depending on α , β . Morrison has proved that

(1.2)
$$g_n(\alpha) = \sum_{r=0}^{n-1} {n \choose r} {n-1 \choose r} \beta^{n-r} \alpha^r / (r+1) = \beta^n F(-n, -n+1; 2; \alpha/\beta).$$

It follows easily from (1.1) that

(1.3)
$$G_n(x) = G_n(x, \alpha, \beta) = (\alpha - \beta)^{n-1} g_n(x) \quad (n \ge 1)$$

is a homogeneous polynomial of degree 2n - 1 in x, α , β . It is of some interest to find an explicit formula for $G_n(x)$. Now, as Morrison has observed,

$$(-1)^{n}(x - \alpha)^{n}g_{n}(x)$$

= $(\alpha - \beta)^{n}x^{n} + \alpha \sum_{r=1}^{n} (-1)^{r}x^{n-r}(x - \alpha)^{r-1}(x - \beta)^{r}(\alpha - \beta)^{n-2r+1}g_{n-1}(\alpha).$

Hence, expanding the right member in powers of $x - \alpha$, we obtain a polynomial expression for $g_n(x)$. However, it seems better to proceed differently.

We may put

(1.4)
$$G_n(x) = \sum_{r=0}^{n-1} A_r^{(n)} (x - \beta)^r (\alpha - \beta)^{n-r-1} \qquad (n \ge 1)$$

where $A_r^{(n)} = A_r^{(n)}(\alpha, \beta)$ is homogeneous of degree n in α, β . Also put

(1.5)
$$G(t) = \sum_{n=1}^{\infty} G_n(x) t^n$$

It is clear from (1.1) that

$$g_n(\beta) = \beta g_{n-1}(\beta) \qquad (n \ge 1).$$

Since $g_0(\beta) = 1$, it follows that

(1.6) $g_n(\beta) = \beta^n \qquad (n = 0, 1, 2, \cdots).$

Comparison with (1.3) and (1.4) gives

(1.7)
$$A_0^{(n)} = \beta^n.$$

Received July 17, 1963. Supported in part by NSF grant G 16485.