A FUNCTIONAL-DIFFERENCE EQUATION

By L. Carlitz

1. J. A. Morrison [1] has considered the functional-difference equation

$$
\begin{equation*}
(x-\alpha)(\alpha-\beta)^{n-1} g_{n}(x)=\alpha(x-\beta)^{n} g_{n-1}(\alpha)-x(\alpha-\beta)^{n} g_{n-1}(x)(n \geq 1) \tag{1.1}
\end{equation*}
$$ where $g_{0}(x)=1$. It follows from (1.1) that, for $n \geq 1, g_{n}(x)$ is a polynomial of degree $n-1$ in x with coefficients depending on α, β. Morrison has proved that

$$
\begin{equation*}
g_{n}(\alpha)=\sum_{r=0}^{n-1}\binom{n}{r}\binom{n-1}{r} \beta^{n-r} \alpha^{r} /(r+1)=\beta^{n} F(-n,-n+1 ; 2 ; \alpha / \beta) . \tag{1.2}
\end{equation*}
$$

It follows easily from (1.1) that

$$
\begin{equation*}
G_{n}(x)=G_{n}(x, \alpha, \beta)=(\alpha-\beta)^{n-1} g_{n}(x) \quad(n \geq 1) \tag{1.3}
\end{equation*}
$$

is a homogeneous polynomial of degree $2 n-1$ in x, α, β. It is of some interest to find an explicit formula for $G_{n}(x)$. Now, as Morrison has observed,

$$
\begin{aligned}
& (-1)^{n}(x-\alpha)^{n} g_{n}(x) \\
& \quad=(\alpha-\beta)^{n} x^{n}+\alpha \sum_{r=1}^{n}(-1)^{r} x^{n-r}(x-\alpha)^{r-1}(x-\beta)^{r}(\alpha-\beta)^{n-2 r+1} g_{n-1}(\alpha) .
\end{aligned}
$$

Hence, expanding the right member in powers of $x-\alpha$, we obtain a polynomial expression for $g_{n}(x)$. However, it seems better to proceed differently.
We may put

$$
\begin{equation*}
G_{n}(x)=\sum_{r=0}^{n-1} A_{r}^{(n)}(x-\beta)^{r}(\alpha-\beta)^{n-r-1} \quad(n \geq 1) \tag{1.4}
\end{equation*}
$$

where $A_{r}^{(n)}=A_{r}^{(n)}(\alpha, \beta)$ is homogeneous of degree n in α, β. Also put

$$
\begin{equation*}
G(t)=\sum_{n=1}^{\infty} G_{n}(x) t^{n} . \tag{1.5}
\end{equation*}
$$

It is clear from (1.1) that

$$
g_{n}(\beta)=\beta g_{n-1}(\beta) \quad(n \geq 1) .
$$

Since $g_{0}(\beta)=1$, it follows that

$$
\begin{equation*}
g_{n}(\beta)=\beta^{n} \quad(n=0,1,2, \cdots) . \tag{1.6}
\end{equation*}
$$

Comparison with (1.3) and (1.4) gives

$$
\begin{equation*}
A_{0}^{(n)}=\beta^{n} . \tag{1.7}
\end{equation*}
$$

Received July 17, 1963. Supported in part by NSF grant G 16485.

