A CERTAIN FUNCTIONAL-DIFFERENCE EQUATION

By J. A. Morrison

1. Introduction. In the study by J. P. Runyon [1] of a queueing system in which a group of servers handles traffic from two sources, one of which is preferred over the other, there arose the functional-difference equation

$$
\begin{align*}
(\alpha-x)(\beta-\alpha)^{n-1} g_{n}(x) & =\left[\alpha(\beta-x)^{n} g_{n-1}(\alpha)-x(\beta-\alpha)^{n} g_{n-1}(x)\right], \quad n \geq 1 ; \tag{1.1}\\
g_{0}(x) & =1
\end{align*}
$$

Here $0<\alpha<\beta$. It follows by induction that $g_{n}(x)$ is a polynomial of degree ($n-1$) in x, with coefficients depending on α and β, for $n \geq 1$. Of particular interest, however, is the value of $g_{n}(\alpha)$. (It is of interest to mention that W. S. Brown has since used his computer program for the symbolic manipulation of rational functions of several variables to calculate the first fifteen $g_{n}(x)$, and the corresponding $g_{n}(\alpha)$.) Now Runyon calculated the first several polynomials $g_{n}(x)$, and thence the corresponding $g_{n}(\alpha)$, from which he conjectured that

$$
\begin{equation*}
g_{n}(\alpha)=\sum_{r=0}^{n-1}\binom{n-1}{r}\binom{n}{r} \beta^{n-r} \alpha^{r} /(r+1)=\beta^{n} F[-n,-(n-1) ; 2 ; \alpha / \beta] \text {, } \tag{1.2}
\end{equation*}
$$

where $F(a, b ; c ; z)$ denotes a hypergeometric function. (J. Riordan has pointed out that these same polynomials arise in the study of the moments of the delay function for last come first served service by a simple trunk group (with Poisson input and exponential holding times).) We proceed to establish this conjecture.
2. A transformation of the equation. Now (1.1) may be written in the form

$$
\begin{align*}
\left\{\left[-\frac{(\alpha-x)}{x(\beta-\alpha)}\right]^{n} g_{n}(x)\right. & \left.-\left[-\frac{(\alpha-x)}{x(\beta-\alpha)}\right]^{n-1} g_{n-1}(x)\right\} \tag{2.1}\\
& =(-1)^{n} \alpha x^{-n}(\alpha-x)^{n-1}(\beta-x)^{n}(\beta-\alpha)^{1-2 n} g_{n-1}(\alpha)
\end{align*}
$$

Summing from $n=1$ to $n=m$, and remembering that $g_{0}(x)=1$, we obtain

$$
\begin{align*}
& {\left[-\frac{(\alpha-x)}{x(\beta-\alpha)}\right]^{m} g_{m}(x)} \tag{2.2}\\
& \quad=\left[1+\sum_{n=1}^{m}(-1)^{n} \alpha x^{-n}(\alpha-x)^{n-1}(\beta-x)^{n}(\beta-\alpha)^{1-2 n} g_{n-1}(\alpha)\right]
\end{align*}
$$

Received June 20, 1963.

