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1. Introduction. In the main, the development of cyclic element theory,
in which the cutpoint plays the central role, was carried out two or three dec-
ades ago. An exhaustive treatment and bibliography is given in [10], by a
principal originator. Extensions in several directions have been made; recently
there has been a flurry of activity by Cesari and Neugebauer in developing a
fine-cyclic element theory, using cuttings by finite sets of points in place of
single points, in connection with the former’s work on the theory of surface
area. (See [1], [2], [5], [6], and [7]). This paper is concerned at first with uni-
fying some of the extensions of cyclic element theory, and then with an examina-
tion of fine-cyclic element theory in a more general framework.

2. General considerations. Let S be an arbitrary connected Hausdorff space,
and a {C} be a collection of non-empty closed sets. A C-nodal decom-
position, denoted (A, C, B) is a decomposition of S into closed connected sets
A and B, S A ) B, such that A (h B C . By convention we require
that neither A nor B equals C, and call A and B C-nodal sets. A C-chain is
a non-empty intersection of C-nodal sets. The name "chain" for this type set
is due to Wallace (See [9]). If X is a non-empty subset of S, C(X) is defined
to be the intersection of all C-nodal sets containing X. Some of the immediate
or nearly immediate properties of the C-operator are:

and

(5) C((h(X)) C C(X), if mX .
It is convenient but, as will be seen, by no means necessary, for this paper

to consider a slight extension of these ideas. Let g {E be another family
of subsets of S, not necessarily closed. A CE-decomposition is a decomposition
.(A; C, E; B) of S into sets A and B with A Kh B C kJ E, so that a CE-
decomposition is the same as a decomposition (A, C k) E, B), except in allowing
/i: to be not closed. A CE-chain is then a non-empty intersection of CE-nodal
sets, prime if incapable of further subdivision in this way, and CE(X) is the
intersection of all CE-nodal sets containing X. It is clear that properties
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() x c c(x),
(2) If XC Y, then C(X) C(Y),
(3) C(C(X)) C(X),
(4) C(C(X)) VhC(X), if C(Z) ,


