FORMAL SOLUTION OF NONLINEAR SIMULTANEOUS EQUATIONS: REVERSION OF SERIES IN SEVERAL VARIABLES

By G. R. Blakley

1. Introduction. For each $i, j, 1 \leq i, j \leq n$ let $w_{i}=z_{j} f_{j}\left(z_{1}, \cdots, z_{n}\right)$ and $z_{i}=w_{i} h_{i}\left(w_{1}, \cdots, w_{n}\right)$ where the f_{i} and h_{i} are analytic and nonzero at the origin. The coefficients of the h_{i} are given explicitly in Theorem 3 in terms of the coefficients of the f_{i}. They are obtained as follows. A combinatorial argument leads to Lemma 2, which makes possible, in Lemmas 4 and 5, a simplification of certain sums of derivatives arising out of I. J. Good's [3] recent generalization of Lagrange's formula. This is enough to prove Theorem 1, a generalization of the formula for reversion of series [4; 406-407]. The explicit representations of the coefficients then follow from a result [2, Theorem 1] in the algebra of formal power series. The notations, conventions and definitions of [2, §2] are used everywhere below, usually without specific mention. This means, among other things, that lower case Greek letters other than $\zeta=\left(z_{1}, \cdots, z_{n}\right), \tau=\left(t_{1}, \cdots, t_{n}\right)$ or $\omega=\left(w_{1}, \cdots, w_{n}\right)$ always represent elements of the set F_{n} of n-partite numbers. In particular, $\beta=\left(b_{1}, \cdots, b_{n}\right)$, $\mu=\left(m_{1}, \cdots, m_{n}\right)$ and $\xi=\left(x_{1}, \cdots, x_{n}\right)$ are elements of F_{n}.
2. Combinatorial preliminaries. Let $N(\beta)=\left\{j: b_{i}=0\right\}, U(\beta)=\left\{j: b_{i}=1\right\}$, $\mu^{-\beta}=1 / \mu^{\beta}$ (see $[2, \S 2]$). If $\beta \leq \nu=(1,1, \cdots, 1)$, let $X(\beta)=\{\tau: \beta \leq \tau \leq \nu\}$ and let $Q(\beta, \mu)=\left\{\Gamma=\left\{(j, \gamma(j)): \gamma(j)=\left(g_{i 1}, \cdots, g_{i n}\right), j_{\varepsilon} U(\beta)\right\}: \sum_{j_{\varepsilon} U(\beta)} \gamma(j)=\mu\right\}$. $Q(\beta, \mu)$ is, to all intents and purposes, the set of ordered partitions [1] of μ into $|\beta|$ parts, some of which may be zero. If $\mu \leq \beta \leq \nu$, let $W(\beta, \mu)=\{\Delta=$ $\left\{(j, \delta(j)): \delta(j)=\left(d_{i 1}, \cdots, d_{i n}\right), j \varepsilon U(\beta)\right\} \varepsilon Q(\beta, \mu):$ If $\theta<\chi \leq \beta$, then $\left.\sum_{i \varepsilon U(x)} \delta(j) \neq \chi\right\}$. Evidently

Lemma 1: If $\varphi \leq \nu$, the coefficient of ζ^{λ} in

For the remainder of this section λ and Γ are fixed, $\lambda \leq \nu, \Gamma=\{(j, \gamma(j)): j \varepsilon U(\nu)\} \varepsilon$ $Q(\nu, \nu-\lambda)$. Let $S(\Gamma)=\left\{\beta \varepsilon X(\lambda)\right.$: if $j \varepsilon N(\beta)$, there is some $k=k_{\beta}(j) \varepsilon N(\beta)$ such that $\epsilon(k) \leq \gamma(j)\}$. Let $\sigma=\left(s_{1}, \cdots, s_{n}\right)$ where $s_{k}=\min \left\{b_{k}: \beta \varepsilon S(\Gamma)\right\}$ for each $k, 1 \leq k \leq n$. If $k \varepsilon N(\sigma)$ and $D=\{\beta \varepsilon S(\Gamma): k \varepsilon N(\beta)\}$, let $A(k)=$ $\bigcap_{\beta \varepsilon D} N(\beta)$ and $A^{*}=\{A(k): k \varepsilon N(\sigma)\}$. Note that one element $T \varepsilon A^{*}$ can correspond to many indices k. With this understanding no harm can come from convenient notations such as $A^{*}=\{A(k): k \varepsilon N(\sigma)\}$ or $N(\beta)=\bigcup_{A(k) \varepsilon B^{*}} A(k)$.

[^0]
[^0]: Received February 18, 1963. This work was done while the author held an NAS-NRC Postdoctoral Research Fellowship. This program is administered by the National Academy of Sciences and supported by the Air Research and Development Command.

